Browse > Article
http://dx.doi.org/10.4150/KPMI.2019.26.5.375

Multicomponent IGZO Ceramics for Transparent Electrode Target Fabricated from Oxides and Nitrates  

Lee, Hyun-Kwun (School of Materials Science and Engineering, Kumoh National Institute of Technology)
Yoon, Ji-Hye (School of Materials Science and Engineering, Kumoh National Institute of Technology)
Cho, Kyeong-Sik (School of Materials Science and Engineering, Kumoh National Institute of Technology)
Publication Information
Journal of Powder Materials / v.26, no.5, 2019 , pp. 375-382 More about this Journal
Abstract
Homogeneous multicomponent indium gallium zinc oxide (IGZO) ceramics for transparent electrode targets are prepared from the oxides and nitrates as the source materials, and their properties are characterized. The selected compositions were $In_2O_3:Ga_2O_3:ZnO$ = 1:1:2, 1:1:6, and 1:1:12 in mole ratio based on oxide. As revealed by X-ray diffraction analysis, calcination of the selected oxide or nitrides at $1200^{\circ}C$ results in the formation of $InGaZnO_4$, $InGaZn_3O_6$, and $InGaZn_5O_8$ phases. The 1:1:2, 1:1:6, and 1:1:12 oxide samples pressed in the form of discs exhibit relative densities of 96.9, 93.2, and 84.1%, respectively, after sintering at $1450^{\circ}C$ for 12 h. The $InGaZn_3O_6$ ceramics prepared from the oxide or nitrate batches comprise large grains and exhibit homogeneous elemental distribution. Under optimized conditions, IGZO multicomponent ceramics with controlled phases, high densities, and homogeneous microstructures (grain and elemental distribution) are obtained.
Keywords
Sputtering target; Calcination; Transparent conducting electrodes; IGZO ceramics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Yuvaraj, F. Y. Lin, T.-H. Chang and C.-T. Yeh: J. Phys. Chem. B, 107 (2003) 1044.   DOI
2 Y. H. Kang, S. Jeong, J. M. Ko, J.-Y. Lee, Y. Choi, C. Lee and S. Y. Cho: J. Mater. Chem. C, 2 (2014) 4247.   DOI
3 W. Xu, H. Cao, L. Liang and J.-B. Xu: ACS Appl. Mater. Interfaces, 7 (2015) 14720.   DOI
4 J.-Y. Jung, S.-H. Kim, E.-T. Kang, K.-S. Han, J.-H. Kim, K.-T. Hwang and W.-S. Cho: J. Korean Ceram. Soc., 51 (2014) 156.   DOI
5 N. Fukuda, Y. Watanabe, S. Uemura, Y. Yoshida, T. Nakamura and H. Ushijima: J. Mater. Chem. C, 2 (2014) 2448.   DOI
6 M.-W. Wu, S.-H. Chang, W.-M. Chaung and H.-S. Huang: J. Eur. Ceram. Soc., 35 (2015) 3893.   DOI
7 A. C. Tas, P. J. Majewski and F. Aldinger: J. Am. Ceram. Soc., 85 (2002) 1421.   DOI
8 T. Omata, M. Kita, H. Okada, S. O.-Y. Matsuo, N. Ono and H. Ikawa: Thin Solid Films, 503 (2006) 22.   DOI
9 Y. Liu, Y. Shu, X. Zeng, B. Sun, P. Liang, Y. Zhang, C. Qiu, J. Yi and J. He: Int. J. Appl. Ceram. Technol., 16 (2019) 585.   DOI
10 C. Liu, J. Liu and Y. Wang: Rare Met., 30 (2011) 126.   DOI
11 K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano and H. Hosono: Science, 300 (2003) 1269.   DOI
12 S.-H. K. Park, C.-S. Hwang, M. Ryu, S. Yang, C. Byun, J. Shin, J.-I. Lee, K. Lee, M. S. Oh and S. Im: Adv. Mater., 21 (2009) 678.   DOI
13 K. Myny: Nat. Electron., 1 (2018) 30.   DOI
14 C.-Y. Chen and J. Kanicki: IEEE Electron Device Lett., 17 (1996) 437.   DOI
15 K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono: Nature, 432 (2004) 488.   DOI
16 J. S. Park, W.-J. Maeng, H.-S. Kim and J.-S. Park: Thin Solid Films, 520 (2012) 1679.   DOI
17 D. P. Notron: Mater. Sci. Eng., R, 43 (2004) 139.   DOI
18 H. Q. Chiang, J. F. Wagger, R. L. Hoffman, J. Joeng and D. A. Keszler: Appl. Phys. Lett., 86 (2005) 013503.   DOI
19 G. Lavareda, C. Nunes de Carvalho, E. Fortunato, A. R. Ramos, E. Alves, O. Conde and A. Amaral: J. Non-Cryst. Solids, 352 (2006) 2311.   DOI
20 K. Matsuzaki, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hiranob and H. Hosono: Thin Solid Films, 496 (2006) 37.   DOI
21 R. E. Presley, C. L. Munsee, C.-H. Park, D. Hong, J. F. Wager and D. A. Keszler: J. Phys. D: Appl. Phys., 37 (2004) 2810.   DOI
22 T. Iwasaki, N. Itagaki, T. Den, H. Kumomi, K. Komura, T. Kamiya and H. Hosono: Appl. Phys Lett, 90 (2007) 242114.   DOI
23 H. Kumomi, K. Komura, T. Kamiya and H. Hosono: Thin Solid Films, 516 (2008) 1516.   DOI
24 N. Itagaki, T. Iwasaki, H. Kumomi, T. Den, K. Nomura, T. Kamiya and H. Hosono: Phys. Status Solidi A, 205 (2008) 1915.   DOI
25 M. Ito, C. Miyazaki, M. Ishizaki, M. Kon, N. Ikeda, T. Okubo, R. Matsubara, K. Hatta, Y. Ugajin and N. Sekine: J. Non-Cryst. Solids, 354 (2008) 2777.   DOI
26 C. Wu, X. Huang, H. Lu, G. Yu, F. Ren, D. Chen, R. Zhang and Y. Zheng: Solid- State Electron., 109 (2015) 37.   DOI
27 S. H. Jin, S. K. Kang, I. T. Cho, S. Y. Han, H. U. Chung, D. J. Lee, J. Shin, G. W. Baek, T. I. Kim, J.-H. Lee and J. A. Rogers: ACS Appl. Mater. Interfaces, 7 (2015) 8268.   DOI
28 Y. C. Zhang, G. He, C. Zhang, L. Zhu, B. Yang, Q. B. Lin and X. S. Jiang: J. Alloys Compd., 765 (2018) 791.   DOI
29 S. An, M. Mativenga, Y. Kim and J. Jin: Appl. Phys. Lett., 105 (2014) 053507.   DOI
30 J. Chen, J. Zhong, W. Luo, C. Qi, B. Sun, S. Liu, B. Liu, Y. Shu and J. He: J. Alloys Compd., 800 (2019) 468.   DOI
31 M.-W. Wu, P.-H. Lai, C.-H. Hong and F.-C. Chou: J. Eur. Ceram. Soc., 34 (2014) 3715.   DOI
32 C.-C. Lo and T.-E. Hsieh: Ceram. Int., 38 (2012) 3977.   DOI
33 M. Xiaobo, Z. Weijia, W. Dongxin, S. Benshuang and Z. Jingming: Rare Met. Mater. Eng., 44 (2015) 2937.   DOI
34 J. Liu, W. Zhang, D. Song, Q. Ma, L. Zhang, H. Zhang, L. Zhang and R. Wu: J. Alloys Compd., 575 (2013) 174.   DOI
35 M.-W. Wu: Ceram. Int., 38 (2012) 6229.   DOI
36 Y. Liu, Y. Zhang, C. Qiu, C. Qi, B. Sun, X. Zeng, J. Zhu, Y. Shu and J. He: Ceram. Int., 45 (2019) 4381.   DOI