Browse > Article
http://dx.doi.org/10.4313/JKEM.2020.33.5.427

Characteristics of MOSFET Devices with Polycrystalline-Gallium-Oxide Thin Films Grown by Mist-CVD  

Seo, Dong-Hyun (Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology)
Kim, Yong-Hyeon (Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology)
Shin, Yun-Ji (Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology)
Lee, Myung-Hyun (Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology)
Jeong, Seong-Min (Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology)
Bae, Si-Young (Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.33, no.5, 2020 , pp. 427-431 More about this Journal
Abstract
In this research, we evaluated the electrical properties of polycrystalline-gallium-oxIde (Ga2O3) thin films grown by mist-CVD. A 500~800 nm-thick Ga2O3 film was used as a channel in a fabricated bottom-gate MOSFET device. The phase stability of the β-phase Ga2O3 layer was enhanced by an annealing treatment. A Ti/Al metal stack served as source and drain electrodes. Maximum drain current (ID) exceeded 1 mA at a drain voltage (VD) of 20 V. Electron mobility of the β-Ga2O3 channel was determined from maximum transconductance (gm), as approximately, 1.39 ㎠/Vs. Reasonable device characteristics were demonstrated, from measurement of drain current-gate voltage, for mist-CVD-grown Ga2O3 thin films.
Keywords
${\beta}-Ga_2O_3$; Mist-CVD; MOSFET; Mobility;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. J. Pearton, J. Yang, P. H. Cary, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, Appl. Phys. Rev., 5, 011301 (2018). [DOI: https://doi.org/10.1063/1.5006941]   DOI
2 M. H. Wong, K. Goto, H. Murakami, Y. Kumagai, and M. Higashiwaki, IEEE Electron Device Lett., 40, 431 (2019). [DOI: https://doi.org/10.1109/LED.2018.2884542]   DOI
3 M. Higashiwaki, K. Sasaki, T. Kamimura, M. H. Wong, D. Krishnamurthy, A. Kuramata, T. Masui, and S. Yamakoshi, Appl. Phys. Lett., 103, 123511 (2013). [DOI: https://doi.org/10.1063/1.4821858]   DOI
4 M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, Appl. Phys. Lett., 100, 013504 (2012). [DOI: https://doi.org/10.1063/1.3674287]   DOI
5 K. Akaiwa, K. Kaneko, K. Ichino, and S. Fujita, Jpn. J. Appl. Phys., 55, 1202BA (2016). [DOI: https://doi.org/10.7567/JJAP.55.1202BA]   DOI
6 Y. An, L. Dai, Y. Wu, B. Wu, Y. Zhao, T. Liu, H. Hao, Z. Li, G. Niu, J. Zhang, Z. Quan, and S. Ding, J. Adv. Dielectr., 9, 1950032 (2019). [DOI: https://doi.org/10.1142/S2010135X19500322]   DOI
7 N. H. Kim and H. W. Kim, Mater. Sci. Forum, 475, 3377 (2005). [DOI: https://doi.org/10.4028/www.scientific.net/MSF.475-479.3377]   DOI
8 H. Zhou, M. Si, S. Alghamdi, G. Qiu, L. Yang, and P. D. Ye, IEEE Electron Device Lett., 38, 103 (2017). [DOI: https://doi.org/10.1109/LED.2016.2635579]   DOI
9 D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P. G. Li, and W. H. Tang, Appl. Phys. Lett., 105, 023507 (2014). [DOI: https://doi.org/10.1063/1.4890524]   DOI
10 J. B. Varley, J. R. Weber, A. Janotti, and C. G. Van de Walle, Appl. Phys. Lett., 97, 142106 (2010). [DOI: https://doi.org/10.1063/1.3499306]   DOI
11 K. H. Kim, M. T. Ha, Y. J. Kwon, H. Lee, S. M. Jeong, and S. Y. Bae, ECS J. Solid State Sci. Technol., 8, Q3165 (2019). [DOI: https://doi.org/10.1149/2.0301907jss]   DOI
12 Y. Cheng, Y. Xu, Z. Li, J. Zhang, D. Chen, Q. Feng, S. Xu, H. Zhou, J. Zhang, Y. Hao, and C. Zhang, J. Alloys Compd., 831, 154776 (2020). [DOI: https://doi.org/10.1016/j.jallcom.2020.154776]   DOI
13 G. T. Dang, T. Kawaharamura, M. Furuta, and M. W. Allen, IEEE Trans. Electron Devices, 62, 3640 (2015). [DOI: https://doi.org/10.1109/TED.2015.2477438]   DOI
14 Y. Zhang, F. Alema, A. Mauze, O. S. Koksaldi, R. Miller, A. Osinsky, and J. S. Speck, APL Mater., 7, 022506 (2019). [DOI: https://doi.org/10.1063/1.5058059]   DOI
15 X. C. Guo, N. H. Hao, D. Y. Guo, Z. P. Wu, Y. H. An, X. L. Chu, L. H. Li, P. G. Li, M. Lei, and W. H. Tang, J. Alloys Compd., 660, 136 (2016). [DOI: https://doi.org/10.1016/j.jallcom.2015.11.145]   DOI
16 Z. Chen, K. Nishihagi, X. Wang, K. Saito, T. Tanaka, M. Nishio, M. Arita, and Q. Guo, Appl. Phys. Lett., 109, 102106 (2016). [DOI: https://doi.org/10.1063/1.4962538]   DOI
17 H. Zhou, K. Maize, G. Qiu, A. Shakouri, and P. D. Ye, Appl. Phys. Lett., 111, 092102 (2017). [DOI: https://doi.org/10.1063/1.5000735]   DOI