Browse > Article
http://dx.doi.org/10.4150/KPMI.2015.22.4.278

Influence of Oxidation Temperatures on the Structure and the Microstructure of GaN MOCVD Scraps  

Hong, Hyun Seon (Sungshin University, Department of Interdisciplinary ECO Science)
Ahn, Joong Woo (Sungshin University, Department of Interdisciplinary ECO Science)
Publication Information
Journal of Powder Materials / v.22, no.4, 2015 , pp. 278-282 More about this Journal
Abstract
The GaN-powder scrap generated in the manufacturing process of LED contains significant amounts of gallium. This waste can be an important resource for gallium through recycling of scraps. In the present study, the influence of annealing temperatures on the structural properties of GaN powder was investigated when the waste was recycled through the mechanochemical oxidation process. The annealing temperature varied from $200^{\circ}C$ to $1100^{\circ}C$ and the changes in crystal structure and microstructure were studied. The annealed powder was characterized using various analytical tools such as TGA, XRD, SEM, and XRF. The results indicate that GaN structure was fully changed to $Ga_2O_3$ structure when annealed above $900^{\circ}C$ for 2 h. And, as the annealing temperature increased, crystallinity and particle size were enhanced. The increase in particle size of gallium oxide was possibly promoted by powder-sintering which merged particles to larger than 50 nm.
Keywords
GaN powder; Annealing temperature; Structural change; Microstructure; Recycling;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. Nakamura and J. Tietian: Appl. Phys. Lett., 74 (1994) 1687.
2 Q. K. Yang, A. Z. Li, Y. G. Zhang, B. Yang, et al.: J. Cryst. Growth, 192 (1998) 28.   DOI   ScienceOn
3 O. Brandt, H. J. Wuensche, H. Yang, R. Klann, J. R. Muellhaeuser and K. H. Ploog: J. Cryst. Growth, 189-190 (1998) 790.   DOI   ScienceOn
4 S. Nakamura, M. Senoh and S. Nagahama: J. Appl. Phys., 35 (1996) 74.   DOI   ScienceOn
5 C. Yeh, Z. W. Lu, S. Froyen and A. Zunger: Phy. Rev. B, 46 (1992) 10086.   DOI   ScienceOn
6 R. Moskalyk: Minerals Eng., 16 (2003) 921.   DOI   ScienceOn
7 Y. K. Lee, Y. U. Sohn, C. W. Nam, Y. Y. Choi and S. U. Hong: J. Korean Inst. of Resources Recycling, 4 (1995) 10 (Korean).
8 Y. Y. Choi, C. W. Nam, Y. T. Yu and W. Y. Kim: J. Korean Inst. of Resources Recycling, 14 (2005) 28 (Korean).
9 J. G. Yang, S. S. Lee, J. H. Kim and Y. G. Hwang: J. Korean Inst. of Resources Recycling, 2 (1993) 27 (Korean).
10 K. S. Park, B. Swain, L. S. Kang, C. G. Lee, H. S. Hong, J. G. Shim and J. J. Park: J. Korean Powder Metall. Inst., 21 (2014) 202 (Korean).   DOI   ScienceOn
11 K. S. Park, B. Swain, L. S. Kang, C. G. Lee, S. H. Uhm, H. S. Hong, J. G. Shim and J. J. Park: Appl. Chem. Eng., 25 (2014) 414.   DOI   ScienceOn
12 B. Swain, C. Mishra, L. S. Kang, K. S. Park, C. G. Lee and H. S. Hong: Environmental Research, 183 (2015) 401.
13 B. Swain, C. Mishra, L. S. Kang, K. S. Park, C. G. Lee, H. S. Hong and J. J. Park: J. Power Sources, 281 (2015) 265.   DOI   ScienceOn