• Title/Summary/Keyword: Gallium nitride

Search Result 152, Processing Time 0.033 seconds

Photoelectrochemical Properties of Gallium Nitride (GaN) Photoelectrode Using Cobalt-phosphate (Co-pi) as Oxygen Evolution Catalyst (산소발생용 Cobalt-phosphate (Co-pi) 촉매를 이용한 Gallium Nitride (GaN) 광전극의 광전기화학적 특성)

  • Seong, Chaewon;Bae, Hyojung;Burungale, Vishal Vilas;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.2
    • /
    • pp.33-38
    • /
    • 2020
  • In the photoelectrochemical (PEC) water splitting, GaN is one of the most promising photoanode materials due to high stability in electrolytes and adjustable energy band position. However, the application of GaN is limited because of low efficiency. To improve solar to hydrogen conversion efficiency, we introduce a Cobalt Phosphate (Co-pi) catalyst by photo-electrodeposition. The Co-pi deposition GaN were characterized by SEM, EDS, and XPS, respectively, which illustrated that Co-pi was successfully decorated on the surface of GaN. PEC measurement showed that photocurrent density of GaN was 0.5 mA/㎠ and that of Co-pi deposited GaN was 0.75 mA/㎠. Impedance and Mott-Schottky measurements were performed, and as a result of the measurement, polarization resistance (Rp) and increased donor concentration (ND) values decreased from 50.35 Ω to 34.16 Ω were confirmed. As a result of analyzing the surface components before and after the water decomposition, it was confirmed that the Co-pi catalyst is stable because Co-pi remains even after the water decomposition. Through this, it was confirmed that Co-pi is effective as a catalyst for improving GaN efficiency, and when applied as a catalyst to other photoelectrodes, it is considered that the efficiency of the PEC system can be improved.

Single-phase Gallium Nitride on Sapphire with buffering AlN layer by Laser-induced CVD

  • Hwang Jin-Soo;Lee Sun-Sook;Chong Paul-Joe
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.1
    • /
    • pp.28-33
    • /
    • 1994
  • The laser-assisted chemical vapor deposition (LCVD) is described, by which the growth of single-phase GaN epitaxy is achieved at lower temperatures. Trimethylgallium (TMG) and ammonia are used as source gases to deposit the epitaxial films of GaN under the irradiation of ArF excimer laser (193 nm). The as-grown deposits are obtained on c-face sapphire surface near 700$^{\circ}$C, which is substantially reduced, relative to the temperatures in conventional thermolytic processes. To overcome the lattice mismatch between c-face sapphire and GaN ad-layer, aluminum nitride(AlN) is predeposited as buffer layer prior to the deposition of GaN. The gas phase interaction is monitored by means of quadrupole mass analyzer (QMA). The stoichiometric deposition is ascertained by X-ray photoelectron spectroscopy (XPS). The GaN deposits thus obtained are characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM) and van der Pauw method.

Problem Analysis of Phase Shifted DC-DC Converter Using GaN FET (GaN FET을 적용한 위상 천이 DC-DC 컨버터의 문제점 분석)

  • Joo, Dong-Myoung;Kim, Dong-Sik;Lee, Byoung-Kuk;Kim, Jong-Soo
    • Proceedings of the KIPE Conference
    • /
    • 2014.11a
    • /
    • pp.197-198
    • /
    • 2014
  • 본 논문에서는 Si MOSFET을 차세대 반도체인 GaN FET(Gallium Nitride Field Effect Transistor)으로의 대체 할 시 발생하는 문제점을 분석한다. 다양한 전력변환 시스템에 적용 가능한 위상 천이 풀브리지(Phase Shifted Full Bridge) DC-DC 컨버터를 대상으로 각각 Si MOSFET 및 GaN FET를 적용하고 실험을 통해 문제점을 확인 및 분석한다.

  • PDF

Implementation of 300W-class Wireless Power Transmission System Using GaN HEMT (GaN HEMT를 적용한 300W급 무선전력전송 시스템 구현)

  • Ahn, Chul-Yong;Kim, Hyun-Bin;Kim, Jong-Soo
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.324-325
    • /
    • 2018
  • 본 논문에서는 GaN(Gallium Nitride) HEMT를 적용한 300W급 자기유도 방식 무선전력전송 시스템을 설계 및 구현한다. GaN HEMT의 물성적 특성을 고려하여 무선전력전송 시스템을 설계하며 이를 검증하기 위해 300W급 Prototype 무선전력전송 시스템을 구현하고 Simulation과 실험을 통해 논문에서 제시한 설계과정의 타당성을 검증한다.

  • PDF

Proton Irradiation Effects on GaN-based devices

  • Keum, Dongmin;Kim, Hyungtak;Cha, Ho-Young
    • Journal of Semiconductor Engineering
    • /
    • v.2 no.1
    • /
    • pp.119-124
    • /
    • 2021
  • Along with the needs for feasibility in the field of space applications, interests in radiation-hardened electronics is growing rapidly. Gallium nitride (GaN)-based devices have been widely researched so far owing to superb radiation resistance. Among them, research on the most abundant protons in low earth orbit (LEO) is essential. In this paper, proton irradiation effects on parameter changes, degradation mechanism, and correlation with reliability of GaN-based devices are summarized.

A comprehensive review on the modeling of smart piezoelectric nanostructures

  • Ebrahimi, Farzad;Hosseini, S.H.S.;Singhal, Abhinav
    • Structural Engineering and Mechanics
    • /
    • v.74 no.5
    • /
    • pp.611-633
    • /
    • 2020
  • In this paper, a comprehensive review of nanostructures that exhibit piezoelectric behavior on all mechanical, buckling, vibrational, thermal and electrical properties is presented. It is firstly explained vast application of materials with their piezoelectric property and also introduction of other properties. Initially, more application of material which have piezoelectric property is introduced. Zinc oxide (ZnO), boron nitride (BN) and gallium nitride (GaN) respectively, are more application of piezoelectric materials. The nonlocal elasticity theory and piezoelectric constitutive relations are demonstrated to evaluate problems and analyses. Three different approaches consisting of atomistic modeling, continuum modeling and nano-scale continuum modeling in the investigation atomistic simulation of piezoelectric nanostructures are explained. Focusing on piezoelectric behavior, investigation of analyses is performed on fields of surface and small scale effects, buckling, vibration and wave propagation. Different investigations are available in literature focusing on the synthesis, applications and mechanical behaviors of piezoelectric nanostructures. In the study of vibration behavior, researches are studied on fields of linear and nonlinear, longitudinal and transverse, free and forced vibrations. This paper is intended to provide an introduction of the development of the piezoelectric nanostructures. The key issue is a very good understanding of mechanical and electrical behaviors and characteristics of piezoelectric structures to employ in electromechanical systems.

Pulsed-Bias Pulsed-RF Passive Load-Pull Measurement of an X-Band GaN HEMT Bare-chip (X-대역 GaN HEMT Bare-Chip 펄스-전압 펄스-RF 수동 로드-풀 측정)

  • Shin, Suk-Woo;Kim, Hyoung-Jong;Choi, Gil-Wong;Choi, Jin-Joo;Lim, Byeong-Ok;Lee, Bok-Hyung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.1
    • /
    • pp.42-48
    • /
    • 2011
  • In this paper, a passive load-pull using a GaN HEMT (Gallium Nitride High Electron Mobility Transistor) bare-chip in X-band is presented. To obtain operation conditions that characteristic change by self-heating was minimized, pulsed drain bias voltage and pulsed-RF signal is employed. An accuracy impedance matching circuits considered parasitic components such as wire-bonding effect at the boundary of the drain is accomplished through the use of a electro-magnetic simulation and a circuit simulation. The microstrip line length-tunable matching circuit is employed to adjust the impedance. The measured maximum output power and drain efficiency of the pulsed load-pull are 42.46 dBm and 58.7%, respectively, across the 8.5-9.2 GHz band.

Enhanced Hole Concentration of p-GaN by Sb Surfactant (Sb 계면활성제에 의한 p-GaN 박막의 홀농도 향상)

  • Kim, J.Y.;Park, S.J.;Moon, Y.B.;Kwon, M.K.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.4
    • /
    • pp.271-275
    • /
    • 2011
  • The role and effect of Sb surfactant on structure and properties of p type gallium nitride (GaN) epilayers have been investigated. It was found that there was a increase of hole concentration with Sb surfactant, compared to typical Mg-doped p-GaN. The structural and optical quality of p-GaN epilayers were accessed by x-ray diffraction, photoluminescence and atomic force microscope measurements. The results clearly show that the increase in hole concentration with Sb surfactant can be resulted from decrease in the dislocations and nitrogen point defects.

Totem-pole Bridgeless Boost PFC Converter Based on GaN FETs (GaN FET을 이용한 토템폴 구조의 브리지리스 부스트 PFC 컨버터)

  • Jang, Paul;Kang, Sang-Woo;Cho, Bo-Hyung;Kim, Jin-Han;Seo, Han-Sol;Park, Hyun-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.3
    • /
    • pp.214-222
    • /
    • 2015
  • The superiority of gallium nitride FET (GaN FET) over silicon MOSFET is examined in this paper. One of the outstanding features of GaN FET is low reverse-recovery charge, which enables continuous conduction mode operation of totem-pole bridgeless boost power factor correction (PFC) circuit. Among many bridgeless topologies, totem-pole bridgeless shows high efficiency and low conducted electromagnetic interference performance, with low cost and simple control scheme. The operation principle, control scheme, and circuit implementation of the proposed topology are provided. The converter is driven in two-module interleaved topology to operate at a power level of 5.5 kW, whereas phase-shedding control is adopted for light load efficiency improvement. Negative bias circuit is used in gate drivers to avoid the shoot-through induced by high speed switching. The superiority of GaN FET is verified by constructing a 5.5 kW prototype of two-module interleaved totem-pole bridgeless boost PFC converter. The experiment results show the highest efficiency of 98.7% at 1.6 kW load and an efficiency of 97.7% at the rated load.