DOI QR코드

DOI QR Code

Proton Irradiation Effects on GaN-based devices

  • Keum, Dongmin (Metamaterial Electronic Device Research Center, Hongik University) ;
  • Kim, Hyungtak (School of Electrical and Electronic Engineering, Hongik University) ;
  • Cha, Ho-Young (School of Electrical and Electronic Engineering, Hongik University)
  • Received : 2021.03.02
  • Accepted : 2021.03.22
  • Published : 2021.03.31

Abstract

Along with the needs for feasibility in the field of space applications, interests in radiation-hardened electronics is growing rapidly. Gallium nitride (GaN)-based devices have been widely researched so far owing to superb radiation resistance. Among them, research on the most abundant protons in low earth orbit (LEO) is essential. In this paper, proton irradiation effects on parameter changes, degradation mechanism, and correlation with reliability of GaN-based devices are summarized.

Keywords

References

  1. R. Gaska, Q. Chen, J. Yang, A. Osinsky, M. Asif Khan, and M. S. Shur, "High-temperature performance of AlGaN/GaN HFET's on SiC substrates", IEEE Electron Device Lett., vol. 18, no. 10, pp. 492-494, Oct. 1997. https://doi.org/10.1109/55.624930
  2. O. Aktas, Z. F. Fan, S. N. Mohammad, A. E. Botchkarev, and H. Morkoc, "High-temperature characteristics of AlGaN/GaN modulation doped field-effect transistors", Appl. Phys. Lett., vol. 69, no. 25, pp. 3872-3874, Dec. 1996. https://doi.org/10.1063/1.117133
  3. J. Mararo, G. Nicolas, D. M. Nhut, S. Forestier, S. Rochette, O. Vendier, D. Langrez, J. Cazaux, and M. Feudale, "GaN for space application: Almost ready for flight", Int. J. Microw. Wirel., vol. 2, no. 1, pp. 121-133, Apr. 2010. https://doi.org/10.1017/S1759078710000206
  4. U. K. Mishra, P. Parikh, and Y. Wu, "AlGaN/GaN HEMTs-an overview of device operation and applications", Proc. IEEE, vol. 90, no. 6, pp. 1022-1031, Jun. 2002. https://doi.org/10.1109/JPROC.2002.1021567
  5. L. F. Eastman and U. K. Mishra, "The toughest yet [GaN Transistor]", IEEE spect., vol. 39, no. 5, pp. 29-33, May 2002. https://doi.org/10.1109/MSPEC.2002.1021952
  6. B. Luo, J. W. Johnson, F. Ren, K. K. Allums, C. R. Abernathy, S. J. Pearton, R. Dwivedi, T. N. Fogarty, R. Wilkins, A. M. Dabiran, A. M. Wowchack, C. J. Polley, P. P. Chow, and A. G. Baca, "DC and RF performance of proton-irradiated AlGaN/GaN high electron mobility transistors," Appl. Phys. Lett., vol. 79, no. 14, pp. 2196-2198, Oct. 2001. https://doi.org/10.1063/1.1408606
  7. X. Hu, A. P. Karmarkar, B. I. Jun, D. M. Fleetwood, R. D. Schrimpf, R. D. Geil, R. A. Welle , B. D. White, M. Bataiev, L. J. Brillson, and U. K. Mishra, "Proton-irradiation effects on Al-GaN/AlN/GaN high electron mobility transistors," IEEE Trans. Nucl. Sci., vol. 50, no. 6, pp. 1791-1796, Dec. 2003. https://doi.org/10.1109/TNS.2003.820792
  8. L. Lv, L. G. Ma, Y. R. Cao, J. C. Zhang, W. Zhang, L. Li, S. R. Xu, X. H. Ma, X. T. Ren, and Y. Hao, "Study of proton irradiation effects on AlGaN/GaN high electron mobility transistors," Microelectron. Reliab., vol. 51, no. 12, pp. 2168-2172, Dec. 2011. https://doi.org/10.1016/j.microrel.2011.04.022
  9. B. D. Weaver, T. J. Anderson, A. D. Koehler, J. D. Greenlee, J. K. Hite, D. I. Shahin, F. J. Kub, and K. D. Hobart, "On the radiation tolerance of AlGaN/GaN HEMTs", J. Solid-State Sci. Technol., vol. 5, no. 7, pp. Q208-Q212, Jun. 2016. https://doi.org/10.1149/2.0281607jss
  10. L. Lv, X. Ma, J. Zhang, Z. Bi, L. Liu, H. Shan, and Y. Hao, "Proton Irradiation Effects on AlGaN/AlN/GaN Heterojunctions", IEEE Trans. Nucl. Sci., vol. 62, no. 1, pp. 300-305, Feb. 2015. https://doi.org/10.1109/TNS.2014.2374178
  11. J. Chen, Y. S. Puzyrev, R. Jiang, E. X. Zhang, M. W. McCurdy, D. M. Fleetwood, R. D. Schrimpf, S. T. Pantelides, A. R. Arehart, S. A. Ringel, P. Saunier, and C. Lee, "Effects of applied bias and high field stress on the radiation response of GaN/AlGaN HEMTs", IEEE Trans. Nucl. Sci., vol. 62, no. 6, pp. 2423-2430, Dec. 2015. https://doi.org/10.1109/TNS.2015.2488650
  12. J. R. Srour, C. J. Marshall, and P. W. Marshall, "Review of Displacement Damage Effects in Silicon Devices", IEEE Trans. Nucl. Sci., vol. 50, no. 3, pp. 653-670, Jun. 2003. https://doi.org/10.1109/TNS.2003.813197
  13. G. P. Summers, B. A. Burke, M. A. Xapsos, C. J. Dale, P. W. Marshall, and E. L. Petersen, "Displacement Damage In GaAs Structures", IEEE Trans. Nucl. Sci., vol. 35, no. 6, pp. 1221-1226, Dec. 1988. https://doi.org/10.1109/23.25443
  14. B. D. Weaver, P. A. Martin, J. B. Boos, and C. D. Cress, "Displacement damage effects in AlGaN/GaN high electron mobility transistors", IEEE Trans. Nucl. Sci., vol. 59, no. 6, pp. 3077-3080, Dec. 2012. https://doi.org/10.1109/TNS.2012.2224371
  15. L. Liu, C.-F. Lo, Y. Xi, Y. Wang, F. Ren, S. J. Pearton, H.-Y. Kim, J. Kim, R. C. Fitch, D. E. Walker Jr., K. D. Chabak, J. K. Gillespie, S. E. Tetlak, G. D. Via, A. Crespo, I. I. Kravchenko, "Dependence on proton energy of degradation of AlGaN/GaN high electron mobility transistor", J. Vac. Sci. Technol. B., vol. 31, no. 2, p. 022201, Jan. 2013. https://doi.org/10.1116/1.4788904
  16. B. D. White, M. Bataiev, S. H. Goss, X. Hu, A. Karmarkar, D. M. Fleetwood, R. D. Schrimpf, W. J. Schaff, and L. J. Brillson, "Electrical, spectral, and chemical properties of 1.8 MeV proton irradiated AlGaN/GaN HEMT structures as a function of proton fluence", IEEE Trans. Nucl. Sci., vol. 50, no. 6, pp. 1934-1941, Dec. 2003. https://doi.org/10.1109/TNS.2003.821827
  17. D. Keum, H.-Y. Cha, and H. Kim, "Proton Bombardment Effects on Normally-off AlGaN/GaN-on-Si Recessed MISHeterostructure FETs," IEEE Trans. Nucl. Sci., vol. 62, no. 6, pp. 3362-3368, Dec. 2015. https://doi.org/10.1109/TNS.2015.2495209
  18. J. F. Ziegler and J. P. Biersack., "The stopping and range of ions in matter.," Treatise on heavy-ion science. Springer, Boston, MA, 1985. pp. 93-129.
  19. D. Keum and H. Kim, "Energy-Dependent Degradation Characteristics of AlGaN/GaN MISHEMTs with 1, 1.5, and 2 MeV Proton Irradiation," ECS J. Solid State Sci. Technol., vol. 7, no. 9, pp. Q159-163, Aug. 2018. https://doi.org/10.1149/2.0021809jss
  20. O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell, and M. Stutzmann, "Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undopoed and doped AlGaN/GaN heterostructures", J. Appl. Phys., vol. 78, no. 1, pp. 334-344, Jan. 2000. https://doi.org/10.1152/jappl.1995.78.1.334
  21. I. P. Smorchkova, C. R. Elsass, J. P. Ibbetson, R. Vetury, B. Heying, P. Fini, E. Haus, S. P. DenBaars, J. S. Speck, and U. K. Mishra, "Polarization-induced charge and electron mobility in AlGaN/GaN heterostructures grown by plasma-assisted molecular-beam epitaxy", J. Appl. Phys., vol. 86, no. 8, pp. 4520-4526, Oct. 1999. https://doi.org/10.1063/1.371396
  22. D. Keum, H.-K. Sung, and H. Kim, "Degradation Characteristics of Normally-Off p-AlGaN Gate AlGaN/GaN HEMTs With 5 MeV Proton Irradiation," IEEE Trans. Nucl. Sci., vol. 64, no. 1, Jan. 2017.
  23. P. Lagger, C. Ostermaier, G. Pobegen, and D. Pogany, "Towards understanding the origin of threshold voltage instability of AlGaN/GaN MISHEMTs", in Proc. IEEE Int. Electron Devices Meeting (IEDM), pp. 299-302, Dec. 2012.
  24. D. K. Schroder, "Oxide and Interface Trapped Charges, Oxide Thickness" Semiconductor Material and Device Characterization, 3rd ed. Hoboken, NJ, USA: Wiley, 2006, pp. 347-350.
  25. E. Patrick, M. E. Law, L. Liu, C. V. Cuervo, Y. Xi, F. Ren, and S. J. Pearton, "Modeling Proton Irradiation in AlGaN/GaN HEMTs: Understanding the Increase of Critical Voltage", IEEE Trans. Nucl. Sci., vol. 60, no. 6, pp. 4103-4108, Dec. 2013. https://doi.org/10.1109/TNS.2013.2286115
  26. D. Keum and H. Kim, "Proton-irradiation Effects on Charge Trapping-related Instability of Normally-off AlGaN/GaN Recessed MISHFETs," J. Semicond. Technol. Sci., vol. 19, no. 2, pp. 214-219, Apr. 2019. https://doi.org/10.5573/JSTS.2019.19.2.214
  27. D. Keum and H. Kim, "Proton Irradiation Effects on the Time-Dependent Dielectric Breakdown Characteristics of Normally-Off AlGaN/GaN Gate-Recessed Metal-Insulator-Semiconductor Heterostructure Field Effect Transistors," Micromachines, vol. 10, p. 723, October 2019. https://doi.org/10.3390/mi10110723