Browse > Article
http://dx.doi.org/10.12989/sem.2020.74.5.611

A comprehensive review on the modeling of smart piezoelectric nanostructures  

Ebrahimi, Farzad (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University)
Hosseini, S.H.S. (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University)
Singhal, Abhinav (Department of mathematics, Madanapalle Institute of technology and sciences)
Publication Information
Structural Engineering and Mechanics / v.74, no.5, 2020 , pp. 611-633 More about this Journal
Abstract
In this paper, a comprehensive review of nanostructures that exhibit piezoelectric behavior on all mechanical, buckling, vibrational, thermal and electrical properties is presented. It is firstly explained vast application of materials with their piezoelectric property and also introduction of other properties. Initially, more application of material which have piezoelectric property is introduced. Zinc oxide (ZnO), boron nitride (BN) and gallium nitride (GaN) respectively, are more application of piezoelectric materials. The nonlocal elasticity theory and piezoelectric constitutive relations are demonstrated to evaluate problems and analyses. Three different approaches consisting of atomistic modeling, continuum modeling and nano-scale continuum modeling in the investigation atomistic simulation of piezoelectric nanostructures are explained. Focusing on piezoelectric behavior, investigation of analyses is performed on fields of surface and small scale effects, buckling, vibration and wave propagation. Different investigations are available in literature focusing on the synthesis, applications and mechanical behaviors of piezoelectric nanostructures. In the study of vibration behavior, researches are studied on fields of linear and nonlinear, longitudinal and transverse, free and forced vibrations. This paper is intended to provide an introduction of the development of the piezoelectric nanostructures. The key issue is a very good understanding of mechanical and electrical behaviors and characteristics of piezoelectric structures to employ in electromechanical systems.
Keywords
piezoelectric; boron nitride; nanostructure; continuum modeling; mechanical properties;
Citations & Related Records
Times Cited By KSCI : 44  (Citation Analysis)
연도 인용수 순위
1 Mohai, I., Mohai, M., Bertoti, I., Sebestyen, Z., Nemeth, P., Babievskaya, I.Z. and Szepvolgyi, J. (2011), "Formation of thin boron nitride coating on multiwall carbon nanotube surfaces" Diamond Related Mater., 20(2), 227-231. https://doi.org/10.1016/j.diamond.2010.12.001.   DOI
2 Mohammadimehr, M. and Rahmati, A.H. (2013), "Small scale effect on electro-thermo-mechanical vibration analysis of single-walled boron nitride nanorods under electric excitation", Turkish J. Eng. Environ. Sci., 37(1).
3 Moheimani, S.R. and Fleming, A.J. (2006), Piezoelectric Transducers For Vibration Control And Damping, Springer Science & Business Media, Germany.
4 Mokhtar, Y., Heireche, H., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018a), "A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory", Smart Struct. Syst., 21(4), 397-405. https://doi.org/10.12989/sss.2018.21.4.397.   DOI
5 Mokhtar, Y., Heireche, H., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory", Smart Struct. Syst., 21(4), 397-405. https://doi.org/10.12989/sss.2018.21.4.397.   DOI
6 Momeni, K., Odegard, G.M. and Yassar, R.S. (2012), "Finite size effect on the piezoelectric properties of ZnO nanobelts: a molecular dynamics approach", Acta materialia, 60(13), 5117-5124. https://doi.org/10.1016/j.actamat.2012.06.041.   DOI
7 Moon, W.H. and Hwang, H.J. (2004), "Molecular mechanics of structural properties of boron nitride nanotubes", Physica E Low Dimensional Syst. Nanostruct., 23(1), 26-30. https://doi.org/10.1016/j.physe.2003.11.273   DOI
8 Mirnezhad, M., Ansari, R. and Rouhi, H. (2013), "Mechanical properties of multilayer boron nitride with different stacking orders", Superlattices Microstructures, 53, 223-231. https://doi.org/10.1016/j.spmi.2012.10.016.   DOI
9 Sahmani, S., Aghdam, M.M. and Akbarzadeh, A.H. (2016), "Size-dependent buckling and postbuckling behavior of piezoelectric cylindrical nanoshells subjected to compression and electrical load", Mater. Design, 105, 341-351. https://doi.org/10.1016/j.matdes.2016.05.065   DOI
10 Sahmani, S. and Fattahi, A.M. (2017), "Thermo-electro-mechanical size-dependent postbuckling response of axially loaded piezoelectric shear deformable nanoshells via nonlocal elasticity theory", Microsyst. Technol., 23(10), 5105-5119. https://doi.org/10.1007/s00542-017-3316-x.   DOI
11 Salehi-Khojin, A. and Jalili, N. (2008), "Buckling of boron nitride nanotube reinforced piezoelectric polymeric composites subject to combined electro-thermo-mechanical loadings", Compos. Sci. Technol., 68(6), 1489-1501. https://doi.org/10.1016/j.compscitech.2007.10.024.   DOI
12 Scrymgeour, D.A. and Hsu, J.W. (2008), "Correlated piezoelectric and electrical properties in individual ZnO nanorods", Nano Letters, 8(8), 2204-2209. https://doi.org/10.1021/nl080704n.   DOI
13 Wu, W. (2016), "High-performance piezoelectric nanogenerators for self-powered nanosystems: Quantitative standards and figures of merit", Nanotechnology, 27(11), 112503. http://dx.doi.org/10.1088/0957-4484/27/11/112503.   DOI
14 Ghorbanpour Arani, A. and Amir, S. (2013), "Electro-thermal vibration of visco-elastically coupled BNNT systems conveying fluid embedded on elastic foundation via strain gradient theory", Physica B: Condensed Matter, 419, 1-6. https://doi.org/10.1016/j.physb.2013.03.010.   DOI
15 Guo, L. and Singh, R. N. (2009), "Catalytic growth of boron nitride nanotubes using gas precursors", Physica E Low Dimensional Syst. Nanostruct., 41(3), 448-453. https://doi.org/10.1016/j.physe.2008.09.009.   DOI
16 Wang, W., Li, P., Jin, F. and Wang, J. (2016), "Vibration analysis of piezoelectric ceramic circular nanoplates considering surface and nonlocal effects", Compos. Struct., 140, 758-775. https://doi.org/10.1016/j.compstruct.2016.01.035.   DOI
17 Xi, Y., Song, J., Xu, S., Yang, R., Gao, Z., Hu, C. and Wang, Z.L. (2009), "Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators", J. Mater. Chem., 19(48), 9260-9264. https://doi.org/10.1039/B917525C.   DOI
18 Xu, Z., Golberg, D. and Bando, Y. (2009), "Electrical field-assisted thermal decomposition of boron nitride nanotube: experiments and first principle calculations", Chem. Phys. Lett., 480(1), 110-112. https://doi.org/10.1016/j.cplett.2009.08.072.   DOI
19 Xu, S. and Wang, Z.L. (2011), "One-dimensional ZnO nanostructures: solution growth and functional properties", Nano Res., 4(11), 1013-1098. https://doi.org/10.1007/s12274-011-0160-7.   DOI
20 Xu, S., Poirier, G. and Yao, N. (2012), "Fabrication and piezoelectric property of PMN-PT nanofibers", Nano Energy, 1(4), 602-607. https://doi.org/10.1016/j.nanoen.2012.03.011.   DOI
21 Araneo, R. and Falconi, C. (2013), "Lateral bending of tapered piezo-semiconductive nanostructures for ultra-sensitive mechanical force to voltage conversion", Nanotechnology, 24(26), 265707. https://doi.org/10.1088/0957-4484/24/26/265707.   DOI
22 Ansari, R., Rouhi, S., Mirnezhad, M. and Aryayi, M. (2015), "Stability characteristics of single-walled boron nitride nanotubes", Arch. Civil Mech. Eng., 15(1), 162-170. https://doi.org/10.1016/j.acme.2014.01.008.   DOI
23 Ansari, R., Oskouie, M. F., Gholami, R. and Sadeghi, F. (2016), "Thermo-electro-mechanical vibration of postbuckled piezoelectric Timoshenko nanobeams based on the nonlocal elasticity theory", Compos. Part B Eng., 89, 316-327. https://doi.org/10.1016/j.compositesb.2015.12.029.   DOI
24 Aphale, S., Fleming, A.J. and Moheimani, S.O.R. (2007), "High speed nano-scale positioning using a piezoelectric tube actuator with active shunt control", Micro Nano Lett., 2(1), 9-12. https://doi.org/10.1049/mnl:20065075.   DOI
25 Arani, A. G. and Haghparast, E. (2011), "Electro-Mechanical Buckling of a Piezoelectric Annular Plate Reinforced with BNNTs Under Thermal Environment", J. Solid Mech., 3(4), 379-391.
26 Arani, A. G., Haghparast, E. and Amir, S. (2012a), "Analytical Solution for Electro-mechanical Behavior of Piezoelectric Rotating Shaft Reinforced by BNNTs under Non-axisymmetric Internal Pressure", J. Solid Mech., 4(4), 339-354.
27 Arani, A. G., Atabakhshian, V., Loghman, A., Shajari, A. R. and Amir, S. (2012b), "Nonlinear vibration of embedded SWBNNTs based on nonlocal Timoshenko beam theory using DQ method", Physica B: Condensed Matter, 407(13), 2549-2555. https://doi.org/10.1016/j.physb.2012.03.065.   DOI
28 Loh, K. P., Lin, M., Yeadon, M., Boothroyd, C. and Hu, Z. (2004), "Growth of boron nitride nanotubes and iron nanowires from the liquid flow of FeB nanoparticles", Chem. Phys. Lett., 387(1), 40-46. https://doi.org/10.1016/j.cplett.2004.01.093.   DOI
29 Wang, K.F. and Wang, B.L. (2012), "The electromechanical coupling behavior of piezoelectric nanowires: Surface and small-scale effects", EPL (Europhysics Letters), 97(6), 66005. https://doi.org/10.1209/0295-5075/97/66005.   DOI
30 Yahia, S.A., Atmane, H.A., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech, 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143.   DOI
31 Khodami Maraghi, Z., Ghorbanpour Arani, A., Kolahchi, R., Amir, S. and Bagheri, M. R. (2013), "Nonlocal vibration and instability of embedded DWBNNT conveying viscose fluid", Compos. Part B Eng., 45(1), 423-432. https://doi.org/10.1016/j.compositesb.2012.04.066.   DOI
32 Ke, L. L., Wang, Y. S. and Wang, Z. D. (2012), "Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory", Compos. Struct., 94(6), 2038-2047. https://doi.org/10.1016/j.compstruct.2012.01.023.   DOI
33 Ke, L. L. and Wang, Y. S. (2012), "Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory", Smart Mater. Struct., 21(2), 025018. https://doi.org/10.1088/0964-1726/21/2/025018.   DOI
34 Kheibari, F. and Beni, Y. T. (2017), "Size dependent electro-mechanical vibration of single-walled piezoelectric nanotubes using thin shell model", Mater. Design, 114, 572-583. https://doi.org/10.1016/j.matdes.2016.10.041.   DOI
35 Kim, J. W., Nunez, J. C., Siochi, E. J., Wise, K. E., Lin, Y., Connell, J. W. and Smith, M. W. (2012), "In situ mechanical property measurements of amorphous carbon-boron nitride nanotube nanostructures", Nanotechnology, 23(3), 035701. https://doi.org/10.1088/0957-4484/23/3/035701   DOI
36 Lu, Y. H., Shen, Y. G., Li, K. Y. and Chen, H. (2006), "Effects of nitrogen content on nanostructure evolution, mechanical behaviors and thermal stability in Ti-B-N thin films", Surface Coatings Technol., 201(3), 1228-1235. https://doi.org/10.1016/j.surfcoat.2006.01.045.   DOI
37 Ma, L.H., Ke, L.L., Wang, Y.Z. and Wang, Y.S. (2017), "Wave propagation in magneto-electro-elastic nanobeams via two nonlocal beam models", Physica E Low Dimensional Syst. Nanostruct., 86, 253-261. https://doi.org/10.1016/j.physe.2016.10.036.   DOI
38 Maity, K., Mahanty, B., Sinha, T.K., Garain, S., Biswas, A., Ghosh, S.K. and Mandal, D. (2017), "Two-Dimensional Piezoelectric MoS2-Modulated Nanogenerator and Nanosensor Made of Poly (vinlydine Fluoride) Nanofiber Webs for Self-Powered Electronics and Robotics", Energy Technol., 5(2), 234-243. https://doi.org/10.1002/ente.201600419.   DOI
39 Majidi, C., Haataja, M. and Srolovitz, D.J. (2010), "Analysis and design principles for shear-mode piezoelectric energy harvesting with ZnO nanoribbons", Smart Mater. Struct., 19(5), 055027. https://doi.org/10.1088/0964-1726/19/5/055027.   DOI
40 Malikan, M. (2017), "Electro-mechanical shear buckling of piezoelectric nanoplate using modified couple stress theory based on simplified first order shear deformation theory", Appl. Math. Model., 48, 196-207. https://doi.org/10.1016/j.apm.2017.03.065.   DOI
41 Meitzler, A.W., A.H., Tiersten, H.F., Warner, A.W., Berlincourt, D., Couqin, G. A. and Welsh III, F. S. (1988), IEEE Standard on Piezoelectricity, IEEE, USA.
42 Kong, X. Y. and Wang, Z. L. (2003), "Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts", Nano Letters, 3(12), 1625-1631. https://doi.org/10.1021/nl034463p.   DOI
43 Djurisic, A. B., Tam, K. H., Hsu, Y. F., Zhang, S. L., Xie, M. H. and Chan, W. K. (2007), "GaN nanowires-influence of the starting material on nanowire growth", Thin Solid Films, 516(2), 238-242. https://doi.org/10.1016/j.tsf.2007.06.031.   DOI
44 Djurisic, A. B., Ng, A. M. C. and Chen, X. Y. (2010), "ZnO nanostructures for optoelectronics: material properties and device applications", Progress Quantum Electronics, 34(4), 191-259. https://doi.org/10.1016/j.pquantelec.2010.04.001.   DOI
45 Draiche, K., Tounsi, A. and Mahmoud, S. R. (2016), "A refined theory with stretching effect for the flexure analysis of laminated composite plates", Geomech. Eng., 11(5), 671-690. https://doi.org/10.12989/gae.2016.11.5.671.   DOI
46 Kolahchi, R. and Ghorbanpour, A. A. (2012), "Nonlinear Vibration and Instability Analysis of a PVDF Cylindrical Shell Reinforced with BNNTs Conveying Viscose Fluid Using HDQ Method", J. Solid Mech., 4(3), 267-276.
47 Kolodyazhnaya, M. P., Zvyagina, G. A., Gudim, I. A., Bilych, I. V., Burma, N. G., Zhekov, K. R. and Fil, V. D. (2017), "Piezoelectric response in SmFe3 (BO3) 4, a non-piezoactive configuration. The surface piezoelectric effect", Low Temperature Physics, 43(8), 924-929. https://doi.org/10.1063/1.5001291.   DOI
48 Zhou, J., Wang, Z., Grots, A. and He, X. (2007), "Electric field drives the nonlinear resonance of a piezoelectric nanowire", Solid State Communications, 144(3), 118-123. https://doi.org/10.1016/j.ssc.2007.08.011.   DOI
49 Zhukovskii, Y. F., Piskunov, S., Pugno, N., Berzina, B., Trinkler, L. and Bellucci, S. (2009), "Ab initio simulations on the atomic and electronic structure of single-walled BN nanotubes and nanoarches", J. Phys. Chem. Solids, 70(5), 796-803. https://doi.org/10.1016/j.jpcs.2009.03.016.   DOI
50 Zidi, M., Houari, M. S. A., Tounsi, A., Bessaim, A. and Mahmoud, S. R. (2017), "A novel simple two-unknown hyperbolic shear deformation theory for functionally graded beams", Struct. Eng. Mech., 64(2), 145-153. https://doi.org/10.12989/sem.2017.64.2.145.   DOI
51 Ebrahimi, F. and Barati, M. R. (2017b), "Modeling of smart magnetically affected flexoelectric/piezoelectric nanostructures incorporating surface effects", Nanomater. Nanotechnol., 7, https://doi.org/10.1177/1847980417713106.
52 Duan, X. and Lieber, C. M. (2000), "Laser-assisted catalytic growth of single crystal GaN nanowires", J. American Chem. Society, 122(1), 188-189. https://doi.org/10.1021/ja993713u.   DOI
53 Ebrahimi, F. and Salari, E. (2015), "Size-dependent thermo-electrical buckling analysis of functionally graded piezoelectric nanobeams", Smart Mater. Struct., 24(12), 125007. https://doi.org/10.1088/0964-1726/24/12/125007.   DOI
54 Ebrahimi, F. and Barati, M. R. (2017a), "Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium", J. Brazilian Soc. Mech. Sci. Eng., 39(3), 937-952. https://doi.org/10.1007/s40430-016-0551-5.   DOI
55 Ebrahimi, F. and Barati, M.R. (2017c), "Vibration analysis of size-dependent flexoelectric nanoplates incorporating surface and thermal effects", Mech. Adv. Mater. Struct., 1-11. https://doi.org/10.1080/15376494.2017.1285464.
56 Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by nonlocal FSDT", Adv. Nano Res., 7(2), 89-98. https://doi.org/10.12989/anr.2019.7.2.089.   DOI
57 Seo, M., Jung, Y., Lim, D., Cho, D. and Jeong, Y. (2013), "Piezoelectric and field emitted properties of controlled ZnO nanorods on CNT yarns", Mater. Letters, 92, 177-180. https://doi.org/10.1016/j.matlet.2012.10.076.   DOI
58 Shahverdi, H. and Barati, M.R. (2017), "Vibration analysis of porous functionally graded nanoplates". J. Eng. Sci., 120, 82-99. https://doi.org/10.1016/j.ijengsci.2017.06.008.   DOI
59 Haghpanahi, M., Oveisi, A. and Gudarzi, M. (2013), "Vibration analysis of piezoelectric nanowires using the finite element method", Int. Res. J. Appl. Basic Sci., 4(1), 205-212.
60 Gupta, M. K., Sinha, N., Singh, B. K., Singh, N., Kumar, K. and Kumar, B. (2009), "Piezoelectric, dielectric, optical and electrical characterization of solution grown flower-like ZnO nanocrystal", Materials Lett., 63(22), 1910-1913. https://doi.org/10.1016/j.matlet.2009.06.003.   DOI
61 Hai-Bo, L., Mao-Sheng, C., Jie, Y., Da-Wei, W., Quan-Liang, Z. and Fu-Chi, W. (2008), "Enhanced mechanical behaviour of lead zirconate titanate piezoelectric composites incorporating zinc oxide nanowhiskers", Chinese Physics B, 17(11), 4323. https://doi.org/10.1088/1674-1056/17/11/060.   DOI
62 Han, W., Fan, S., Li, Q. and Hu, Y. (1997), "Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction", Science, 277(5330), 1287-1289. https://doi.org/10.1126/science.277.5330.1287.   DOI
63 Han, W., Redlich, P., Ernst, F. and Ruhle, M. (2000), "Synthesis of GaN-carbon composite nanotubes and GaN nanorods by arc discharge in nitrogen atmosphere", Appl. Phys. Lett., 76(5), 652-654. https://doi.org/10.1063/1.125848.   DOI
64 Chang, J., Dommer, M., Chang, C. and Lin, L. (2012), "Piezoelectric nanofibers for energy scavenging applications", Nano Energy, 1(3), 356-371. https://doi.org/10.1016/j.nanoen.2012.02.003.   DOI
65 Boughey, F. L., Davies, T., Datta, A., Whiter, R. A., Sahonta, S. L. and Kar-Narayan, S. (2016), "Vertically aligned zinc oxide nanowires electrodeposited within porous polycarbonate templates for vibrational energy harvesting", Nanotechnology, 27(28), 28LT02. https://doi.org/10.1088/0957-4484/27/28/28LT02.   DOI
66 Brush, D. O. and Almroth, B. O. (1975), Buckling of Bars, Plates, And Shells, McGraw-Hill, NY, USA.
67 Capsal, J.F., Dantras, E., Laffont, L., Dandurand, J. and Lacabanne, C. (2010), "Nanotexture influence of BaTiO3 particles on piezoelectric behaviour of PA 11/BaTiO3 nanocomposites", J. Non Crystalline Solids, 356(11-17), 629-634. https://doi.org/10.1016/j.jnoncrysol.2009.06.050.   DOI
68 Chen, C. Q., Shi, Y., Zhang, Y. S., Zhu, J. and Yan, Y. J. (2006), "Size dependence of Young's modulus in ZnO nanowires", Physical Rev. Lett., 96(7), 075505. https://doi.org/10.1103/PhysRevLett.96.075505.   DOI
69 Chen, H., Chen, Y., Liu, Y., Fu, L., Huang, C. and Llewellyn, D. (2008), "Over 1.0 mm-long boron nitride nanotubes", Chem. Phys. Lett., 463(1), 130-133. https://doi.org/10.1016/j.cplett.2008.08.007.   DOI
70 Sharma, N.D., Maranganti, R. and Sharma, P. (2007), "On the possibility of piezoelectric nanocomposites without using piezoelectric materials", J. Mech. Phys. Solids, 55(11), 2328-2350. https://doi.org/10.1016/j.jmps.2007.03.016.   DOI
71 Shokuhfar, A. and Ebrahimi-Nejad, S. (2013)' "Effects of structural defects on the compressive buckling of boron nitride nanotubes", Physica E Low Dimensional Syst. Nanostruct., 48, 53-60. https://doi.org/10.1016/j.physe.2012.11.024.   DOI
72 Sinha, N., Wabiszewski, G.E., Mahameed, R., Felmetsger, V.V., Tanner, S. M., Carpick, R. W. and Piazza, G. (2009), "Ultra-thin AlN piezoelectric nano-actuators", Solid-State Sensors, Actuators and Microsystems Conference, 2009, TRANSDUCERS 2009. International, Denver, Colorado, USA. 469-472. https://doi.org/10.1109/SENSOR.2009.5285460.
73 Soltani, A., Moradi, A.V., Bahari, M., Masoodi, A. and Shojaee, S. (2013), "Computational investigation of the electronic and structural properties of CN radical on the pristine and Al-doped (6, 0) BN nanotubes", Physica B: Condensed Matter, 430, 20-26. https://doi.org/10.1016/j.physb.2013.07.032.   DOI
74 Song, F., Huang, G.L., Park, H.S. and Liu, X.N. (2011), "A continuum model for the mechanical behavior of nanowires including surface and surface-induced initial stresses", J. Solids Struct., 48(14), 2154-2163. https://doi.org/10.1016/j.ijsolstr.2011.03.021.   DOI
75 Yan, Z. and Jiang, L. (2011a), "Electromechanical response of a curved piezoelectric nanobeam with the consideration of surface effects", J. Phys. D Appl. Phys., 44(36), 365301. https://doi.org/10.1088/0022-3727/44/36/365301.   DOI
76 He, J. and Lilley, C. M. (2008a), "Surface effect on the elastic behavior of static bending nanowires", Nano Letters, 8(7), 1798-1802. https://doi.org/10.1021/nl0733233.   DOI
77 He, J. and Lilley, C. M. (2008b), "Surface stress effect on bending resonance of nanowires with different boundary conditions", Appl. Phys. Lett., 93(26), 263108. https://doi.org/10.1063/1.3050108.   DOI
78 Hebali, H., Tounsi, A., Houari, M. S. A., Bessaim, A. and Bedia, E. A. A. (2014), "New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech., 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665.   DOI
79 Yan, Z. and Jiang, L. (2011b), "Surface effects on the electromechanical coupling and bending behaviors of piezoelectric nanowires", J. Phys. D Appl. Phys., 44(7), 75404.   DOI
80 Yan, Z. and Jiang, L.Y. (2011c), "The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects", Nanotechnology, 22(24), 245703. https://doi.org/10.1088/0957-4484/22/24/245703.   DOI
81 Yan, Z. and Jiang, L.Y. (2012a), "Surface effects on the vibration and buckling of piezoelectric nanoplates", EPL (Europhysics Letters), 99(2), 27007. https://doi.org/10.1209/0295-5075/99/27007.   DOI
82 Yan, Z. and Jiang, L.Y. (2012b), "Vibration and buckling analysis of a piezoelectric nanoplate considering surface effects and in-plane constraints", Proceedings of the Royal Society A: Mathematical, Phys. Eng. Sci., https://doi.org/10.1098/rspa.2012.0214.
83 Mortazavi, B. and Remond, Y. (2012), "Investigation of tensile response and thermal conductivity of boron-nitride nanosheets using molecular dynamics simulations", Physica E Low Dimensional Syst. Nanostruct., 44(9), 1846-1852. https://doi.org/10.1016/j.physe.2012.05.007.   DOI
84 Chen, X., Xu, S., Yao, N. and Shi, Y. (2010), "1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers", Nano Letters, 10(6), 2133-2137. https://doi.org/10.1021/nl100812k.   DOI
85 Chen, J. and Lee, J. D. (2010), "Atomic Formulation of Nano-Piezoelectricity in Barium Titanate", Nanosci. Nanotechnol. Lett., 2(1), 26-29. https://doi.org/10.1166/nnl.2010.1048.   DOI
86 Chen, Y. Q., Zheng, X. J. and Li, W. (2010), "Size effect of mechanical behavior for lead-free (Na0. 82K0. 18) 0.5 Bi0. 5TiO3 nanofibers by nanoindentation", Mater. Sci. Eng. A Struct. Mater., 527(21), 5462. https://doi.org/10.1016/j.msea.2010.05.066   DOI
87 Mosallaie Barzoki, A.A., Ghorbanpour Arani, A., Kolahchi, R. and Mozdianfard, M.R. (2012), "Electro-thermo-mechanical torsional buckling of a piezoelectric polymeric cylindrical shell reinforced by DWBNNTs with an elastic core", Appl. Math. Modelling, 36(7), 2983-2995. https://doi.org/10.1016/j.apm.2011.09.093.   DOI
88 Mosallaie Barzoki, A.A., Ghorbanpour Arani, A., Kolahchi, R., Mozdianfard, M.R. and Loghman, A. (2013), "Nonlinear buckling response of embedded piezoelectric cylindrical shell reinforced with BNNT under electro-thermo-mechanical loadings using HDQM", Compos. Part B Eng., 44(1), 722-727. https://doi.org/10.1016/j.compositesb.2012.01.052.   DOI
89 Mouffoki, A., Adda Bedia, E. A., Houari, M. S. A., Tounsi, A. and Mahmoud, S.R. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., 20(3), 369-383. https://doi.org/10.12989/sss.2017.20.3.369.   DOI
90 Yan, Z. (2013), "Continuum modeling on size-dependent properties of piezoelectric nanostructures", https://ir.lib.uwo.ca/etd/1322.
91 Yan, Z. and Jiang, L. (2013), "Size-dependent bending and vibration behaviour of piezoelectric nanobeams due to flexoelectricity", J. Phys. D Appl. Phys., 46(35), 355502.   DOI
92 Yazid, M., Heireche, H., Tounsi, A., Bousahla, A. A. and Houari, M. S. A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst.., 21(1), 15-25. https://doi.org/10.12989/sss.2018.21.1.015.
93 Ye, L., Lu, G. and Ong, L. S. (2011), "Buckling of a thin-walled cylindrical shell with foam core under axial compression", Thin-walled struct., 49(1), 106-111. https://doi.org/10.1016/j.tws.2010.08.011.   DOI
94 Arani, A. G., Bidgoli, A. H., Ravandi, A. K., Roudbari, M. A., Amir, S., & Azizkhani, M. B. (2013b), "Induced nonlocal electric wave propagation of boron nitride nanotubes", J. Mech. Sci. Technol., 27(10), 3063-3071. https://doi.org/10.1007/s12206-013-0705-7.   DOI
95 Arani, A. G., Vossough, H., Kolahchi, R. and Barzoki, A. M. (2012c), "Electro-thermo nonlocal nonlinear vibration in an embedded polymeric piezoelectric micro plate reinforced by DWBNNTs using DQM", J. Mech. Sci. Technol., 26(10), 3047-3057. https://doi.org/10.1007/s12206-012-0816-6.   DOI
96 Arani, A. G., Shokravi, M., Amir, S. and Mozdianfard, M. R. (2012d), "Nonlocal electro-thermal transverse vibration of embedded fluid-conveying DWBNNTs", J. Mech. Sci. Technol., 26(5), 1455-1462. https://doi.org/10.1007/s12206-012-0307-9.   DOI
97 Arani, A. G., Haghshenas, A., Amir, S., Mozdianfard, M. R. and Latifi, M. (2013a), "Electro-thermo-mechanical response of thick-walled piezoelectric cylinder reinforced by boron-nitride nanotubes", Strength Mater., 45(1), 102-115. https://doi.org/10.1007/s11223-013-9437-2.   DOI
98 Arani, A. G., Kolahchi, R. and Mortazavi, S. A. (2014), "Nonlocal piezoelasticity based wave propagation of bonded double-piezoelectric nanobeam-systems", J. Mech. Mater. Design, 10(2), 179-191. https://doi.org/10.1007/s10999-014-9239-0.   DOI
99 Arefi, M. and Zenkour, A. M. (2017), "Nonlocal electro-thermo-mechanical analysis of a sandwich nanoplate containing a Kelvin-Voigt viscoelastic nanoplate and two piezoelectric layers", Acta Mechanica, 228(2), 475-493. https://doi.org/10.1007/s00707-016-1716-0.   DOI
100 Arya, S. K., Saha, S., Ramirez-Vick, J. E., Gupta, V., Bhansali, S. and Singh, S. P. (2012), "Recent advances in ZnO nanostructures and thin films for biosensor applications: Review", Analytica Chimica Acta, 737, 1-21. https://doi.org/10.1016/j.aca.2012.05.048.   DOI
101 Nazemnezhad, R. and Hosseini-Hashemi, S. (2014), "Nonlocal nonlinear free vibration of functionally graded nanobeams", Compos. Struct., 110, 192-199. https://doi.org/10.1016/j.compstruct.2013.12.006.   DOI
102 Numanoglu, H.M., Akgoz, B. and Civalek, O. (2018), "On dynamic analysis of nanorods", J. Eng. Sci., 130, 33-50. https://doi.org/10.1016/j.ijengsci.2018.05.001.   DOI
103 Oku, T., Koi, N. and Suganuma, K. (2008), "Synthesis and nanostructure of boron nitride nanotubes grown from iron-evaporated boron", Diamond Related Mater., 17(7), 1805-1807. https://doi.org/10.1016/j.diamond.2008.01.009.   DOI
104 Kumar, B. and Kim, S. W. (2012), "Energy harvesting based on semiconducting piezoelectric ZnO nanostructures", Nano Energy, 1(3), 342-355. https://doi.org/10.1016/j.nanoen.2012.02.001.   DOI
105 Ebrahimi, F. and Dabbagh, A. (2018), "Viscoelastic wave propagation analysis of axially motivated double-layered graphene sheets via nonlocal strain gradient theory", Waves in Random Complex Media, 1-20. https://doi.org/10.1080/17455030.2018.1490505.
106 Abdelaziz, H.H., Meziane, M.A.A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., 25(6), 693-704. https://doi.org/10.12989/scs.2017.25.6.693.   DOI
107 Abdollahian, M., Ghorbanpour Arani, A., Mosallaie Barzoki, A. A., Kolahchi, R. and Loghman, A. (2013), "Non-local wave propagation in embedded armchair TWBNNTs conveying viscous fluid using DQM", Physica B: Condensed Matter, 418, 1-15. https://doi.org/10.1016/j.physb.2013.02.037.   DOI
108 Abualnour, M., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct., 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047.   DOI
109 Kumar, B., Lee, K. Y., Park, H. K., Chae, S. J., Lee, Y. H. and Kim, S. W. (2011), "Controlled growth of semiconducting nanowire, nanowall, and hybrid nanostructures on graphene for piezoelectric nanogenerators", Acs Nano, 5(5), 4197-4204. https://doi.org/10.1021/nn200942s.   DOI
110 Lahiri, D., Singh, V., Benaduce, A. P., Seal, S., Kos, L. and Agarwal, A. (2011), "Boron nitride nanotube reinforced hydroxyapatite composite: Mechanical and tribological performance and in-vitro biocompatibility to osteoblasts", J. Mech. Behavior Biomedical Mater., 4(1), 44-56. https://doi.org/10.1016/j.jmbbm.2010.09.005.   DOI
111 Mercan, K. and Civalek, O. (2016), "DSC method for buckling analysis of boron nitride nanotube (BNNT) surrounded by an elastic matrix", Compos. Struct. 143, 300-309. https://doi.org/10.1016/j.compstruct.2016.02.040.   DOI
112 Meksi, R., Benyoucef, S., Mahmoudi, A., Tounsi, A., Adda Bedia, E. A. and Mahmoud, S. R. (2019), "An analytical solution for bending, buckling and vibration responses of FGM sandwich plates", J. Sandwich Struct. Mater., 21(2), 727-757. https://doi.org/10.1177%2F1099636217698443.   DOI
113 Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S. R. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., 25(2), 157-175. https://doi.org/10.12989/scs.2017.25.2.157.   DOI
114 Meng, Y., Xiu, P., Huang, B., Wang, Z., Zhang, R.Q. and Zhou, R. (2014), "A unique feature of chiral transition of a difluorobenzo [c] phenanthrene molecule confined in a boron-nitride nanotube based on molecular dynamics simulations", Chem. Phys. Lett., 591, 265-267. https://doi.org/10.1016/j.cplett.2013.11.052.   DOI
115 Mercan K and Civalek, O. (2017), "Buckling analysis of Silicon carbide nanotubes (SiCNTs) with surface effect and nonlocalelasticity using the method of HDQ", Compos. Part B, 114, 34-45. https://doi.org/10.1016/j.compositesb.2017.01.067.   DOI
116 Meziane, M. A. A., Abdelaziz, H. H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandwich Struct. Mater., 16(3), 293-318. https://doi.org/10.1177%2F1099636214526852.   DOI
117 Minary-Jolandan, M., Bernal, R.A. and Espinosa, H.D. (2011), "Strong piezoelectricity in individual GaN nanowires", MRS Communications, 1(01), 45-48. https://doi.org/10.1557/mrc.2011.14   DOI
118 Fan, Z. and Lu, J. G. (2005), "Zinc oxide nanostructures: synthesis and properties", J. Nanosci. Nanotechnol., 5(10), 1561-1573. https://doi.org/10.1166/jnn.2005.182.   DOI
119 El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63(5), 585-595. https://doi.org/10.12989/sem.2017.63.5.585.   DOI
120 Fakrach, B., Rahmani, A., Chadli, H., Sbai, K. and Sauvajol, J. L. (2009), "Raman spectrum of single-walled boron nitride nanotube", Physica E Low Dimensional Syst. Nanostruct., 41(10), 1800-1805. https://doi.org/10.1016/j.physe.2009.07.002.   DOI
121 Fang, X. Q. and Liu, J. X. (2011), "Dynamic stress and electric displacement around a nano-fiber in piezoelectric nanocomposites under electro-elastic waves", Philosophical Magazine Letters, 91(9), 621-631. https://doi.org/10.1080/09500839.2011.600258.   DOI
122 Fang, X. Q. and Zhu, C. S. (2017), "Size-dependent nonlinear vibration of nonhomogeneous shell embedded with a piezoelectric layer based on surface/interface theory", Compos. Struct., 160, 1191-1197. https://doi.org/10.1016/j.compstruct.2016.11.008.   DOI
123 Farajpour, A., Rastgoo, A. and Mohammadi, M. (2017), "Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment", Physica B: Condensed Matter, 509, 100-114. https://doi.org/10.1016/j.physb.2017.01.006.   DOI
124 Fourn, H., Atmane, H. A., Bourada, M., Bousahla, A. A., Tounsi, A. and Mahmoud, S. R. (2018), "A novel four variable refined plate theory for wave propagation in functionally graded material plates", Steel Compos. Struct., 27(1), 109-122. https://doi.org/10.12989/scs.2018.27.1.109.   DOI
125 Sun, C., Shi, J. and Wang, X. (2010), "Fundamental study of mechanical energy harvesting using piezoelectric nanostructures", J. Appl. Phys., 108(3), 034309. https://doi.org/10.1063/1.3462468.   DOI
126 Li, F. M., Hsieh, G. W., Dalal, S., Newton, M. C., Stott, J. E., Hiralal, P. and Milne, W. I. (2008), "Zinc oxide nanostructures and high electron mobility nanocomposite thin film transistors", Electron Devices, IEEE Transactions on, 55(11), 3001-3011. https://doi.org/10.1109/TED.2008.2005180.   DOI
127 Hiralal, P., Unalan, H. E. and Amaratunga, G. A. (2012), "Nanowires for energy generation", Nanotechnology, 23(19), 194002. https://doi.org/10.1088/0957-4484/23/19/194002.   DOI
128 Hocevar, M., Songmuang, R., Den Hertog, M., Besombes, L., Bleuse, J., Niquet, Y. M. and Pelekanos, N. T. (2013), "Residual strain and piezoelectric effects in passivated GaAs/AlGaAs core-shell nanowires", Appl. Phys. Lett., 102(19), 191103. https://doi.org/10.1063/1.4803685.   DOI
129 Larbi Chaht, F., Kaci, A., Houari, M. S. A., Tounsi, A., Anwar Beg, O. and Mahmoud, S. R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel. Compos. Struct, 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425.   DOI
130 Lee, Y. B., Han, J. K., Noothongkaew, S., Kim, S. K., Song, W., Myung, S. and An, K. S. (2017), "Toward Arbitrary-Direction Energy Harvesting through Flexible Piezoelectric Nanogenerators Using Perovskite PbTiO3 Nanotube Arrays", Adv. Mater., 29(6). https://doi.org/10.1002/adma.201604500.
131 Li, C., Liu, J. J., Cheng, M. and Fan, X.L. (2017), "Nonlocal vibrations and stabilities in parametric resonance of axially moving viscoelastic piezoelectric nanoplate subjected to thermo-electro-mechanical forces", Compos. Part B Eng., 116, 153-169. https://doi.org/10.1016/j.compositesb.2017.01.071.   DOI
132 Minary-Jolandan, M., Bernal, R.A., Kuljanishvili, I., Parpoil, V. and Espinosa, H.D. (2012), "Individual GaN nanowires exhibit strong piezoelectricity in 3D", Nano Letters, 12(2), 970-976. https://doi.org/10.1021/nl204043y.   DOI
133 Ulus, H., Ustun, T., Eskizeybek, V., Sahin, O.S., Avci, A. and Ekrem, M. (2013), "Boron nitride-MWCNT/epoxy hybrid nanocomposites: Preparation and mechanical properties", Appl. Surface Sci., 37-42. https://doi.org/10.1016/j.apsusc.2013.12.070.
134 Taghizadeh, M., Ovesy, H.R. and Ghannadpour, S.A.M. (2015), "Nonlocal integral elasticity analysis of beam bending by using finite element method", Struct. Eng. Mech., 54(4), 755-769. https://doi.org/10.12989/sem.2015.54.4.755.   DOI
135 Tlidji, Y., Zidour, M., Draiche, K., Safa, A., Bourada, M., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2019), "Vibration analysis of different material distributions of functionally graded microbeam", Struct. Eng. Mech., 69(6), 637-649. https://doi.org/10.12989/sem.2019.69.6.637.   DOI
136 Tounsi, A., Houari, M.S.A. and Bessaim, A. (2016), "A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate", Struct. Eng. Mech., 60(4), 547-565. https://doi.org/10.12989/sem.2016.60.4.547.   DOI
137 Vahedi Fakhrabad, D. and Shahtahmassebi, N. (2013), "First-principles calculations of the Young's modulus of double wall boron-nitride nanotubes", Mater. Chem. Phys., 138(2), 963-966. https://doi.org/10.1016/j.matchemphys.2013.01.004.   DOI
138 Wang, Z.L. (2004), "Nanostructures of zinc oxide", Mater. Today, 7(6), 26-33. https://doi.org/10.1016/S1369-7021(04)00286-X.   DOI
139 Wang, Z.L. (2004), "Zinc oxide nanostructures: growth, properties and applications", J. Phys. Condensed Matter, 16(25), R829. https://doi.org/10.1088/0953-8984/16/25/R01.   DOI
140 Wang, Z.L. (2004), "Zinc oxide nanostructures: growth, properties and applications", J. Phys. Condensed Matter, 16(25), R829. https://doi.org/10.1088/0953-8984/16/25/R01.   DOI
141 Huang, G. Y. and Yu, S. W. (2006), "Effect of surface piezoelectricity on the electromechanical behaviour of a piezoelectric ring", Physica Status Solidi (b), 243(4), 22-24. https://doi.org/10.1002/pssb.200541521.
142 Hosseini, M., Maryam, A. Z. B. and Bahaadini, R. (2017), "Forced vibrations of fluid-conveyed double piezoelectric functionally graded micropipes subjected to moving load", Microfluidics Nanofluidics, 21(8), 134. https://doi.org/10.1007/s10404-017-1963-y.   DOI
143 Hosseini-Hashemi, S., Nazemnezhad, R. and Bedroud, M. (2014), "Surface effects on nonlinear free vibration of functionally graded nanobeams using nonlocal elasticity", Appl. Math. Modelling, 38(14), 3538-3553. https://doi.org/10.1016/j.apm.2013.11.068.   DOI
144 Houari, M. S. A., Tounsi, A., Bessaim, A. and Mahmoud, S. R. (2016), "A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., 22(2), 257-276. https://doi.org/10.12989/scs.2016.22.2.257.   DOI
145 Hughes, W. L. and Wang, Z. L. (2004), "Formation of piezoelectric single-crystal nanorings and nanobows", J. American Chem. Soc., 126(21), 6703-6709. https://doi.org/10.1021/ja049266m.   DOI
146 Hughes, W. L. and Wang, Z. L. (2005), "Controlled synthesis and manipulation of ZnO nanorings and nanobows", Appl. Phys. Lett., 86(4), 043106. https://doi.org/10.1063/1.1853514.   DOI
147 Youcef, D.O., Kaci, A., Benzair, A., Bousahla, A. A. and Tounsi, A. (2018), "Dynamic analysis of nanoscale beams including surface stress effects", Smart Struct. Syst., 21(1), 65-74. https://doi.org/10.12989/sss.2018.21.1.065.   DOI
148 Younsi, A., Tounsi, A., Zaoui, F.Z., Bousahla, A. A. and Mahmoud, S. R. (2018), "Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates", Geomech. Eng., 14(6), 519-532. https://doi.org/10.12989/gae.2018.14.6.519.   DOI
149 Cheng, J., Zhang, L., Ding, R., Ding, Z., Wang, X. and Wang, Z. (2007b), "Grand canonical Monte Carlo simulation of hydrogen physisorption in single-walled boron nitride nanotubes", J. Hydrogen Energy, 32(15), 3402-3405. https://doi.org/10.1016/j.ijhydene.2007.02.037.   DOI
150 Cheng, J., Ding, R., Liu, Y., Ding, Z. and Zhang, L. (2007a), "Computer simulation of hydrogen physisorption in single-walled boron nitride nanotube arrays", Comput. Mater. Sci., 40(3), 341-344. https://doi.org/10.1016/j.commatsci.2007.01.006.   DOI
151 Cherif, R. H., Meradjah, M., Zidour, M., Tounsi, A., Belmahi, H. and Bensattalah, T. (2018), "Vibration analysis of nano beam using differential transform method including thermal effect", J. Nano Res., 54, 1-14. https://doi.org/10.4028/www.scientific.net/JNanoR.54.1.   DOI
152 Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., 19(3), 289-297.   DOI
153 Zenkour, A. M. and Sobhy, M. (2017), "Nonlocal piezo-hygrothermal analysis for vibration characteristics of a piezoelectric Kelvin-Voigt viscoelastic nanoplate embedded in a viscoelastic medium", Acta Mechanica, 1-17. https://doi.org/10.1007/s00707-017-1920-6.
154 Yun, S. and Kim, J. (2011), "Mechanical, electrical, piezoelectric and electro-active behavior of aligned multi-walled carbon nanotube/cellulose composites", Carbon, 49(2), 518-527. https://doi.org/10.1016/j.carbon.2010.09.051.   DOI
155 Zaoui, F. Z., Ouinas, D. and Tounsi, A. (2019), "New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations", Compos. Part B, 159, 231-247. https://doi.org/10.1016/j.compositesb.2018.09.051.   DOI
156 Zemri, A., Houari, M. S. A., Bousahla, A. A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693.   DOI
157 Zenkour, A. M. and Arefi, M. (2017), "Nonlocal transient electrothermomechanical vibration and bending analysis of a functionally graded piezoelectric single-layered nanosheet rest on visco-Pasternak foundation", J. Thermal Stresses, 40(2), 167-184. https://doi.org/10.1080/01495739.2016.1229146.   DOI
158 Zhang, L. and Huang, H. (2006), "Young's moduli of ZnO nanoplates: Ab initio determinations", Appl. Phys. Lett., 89(18), 183111. https://doi.org/10.1063/1.2374856.   DOI
159 Chopra, N. G. and Zettl, A. (1998), "Measurement of the elastic modulus of a multi-wall boron nitride nanotube", Solid State Communications, 105(5), 297-300.   DOI
160 Choi, M., Murillo, G., Hwang, S., Kim, J. W., Jung, J. H., Chen, C. Y. and Lee, M. (2017), "Mechanical and electrical characterization of PVDF-ZnO hybrid structure for application to nanogenerator", Nano Energy, 33, 462-468.   DOI
161 Chowdhury, R., Adhikari, S. and Scarpa, F. (2010), "Elasticity and piezoelectricity of zinc oxide nanostructure", Physica E Low Dimensional Syst. Nanostruct., 42(8), 2036-2040. https://doi.org/10.1016/j.physe.2010.03.018.   DOI
162 Cheng, G. S., Zhang, L. D., Zhu, Y., Fei, G. T., Li, L., Mo, C. M. and Mao, Y. Q. (1999), "Large-scale synthesis of single crystalline gallium nitride nanowires", Appl. Phys. Lett., 75(16), 2455-2457. https://doi.org/10.1063/1.125046.   DOI
163 Panchal, M.B. and Upadhyay, S.H. (2013), "Cantilevered single walled boron nitride nanotube based nanomechanical resonators of zigzag and armchair forms", Physica E Low Dimensional Syst. Nanostruct., 50, 73-82. https://doi.org/10.1016/j.physe.2013.02.018   DOI
164 Panchal, M.B., Upadhyay, S.H. and Harsha, S.P. (2013), "Vibrational characteristics of defective single walled BN nanotube based nanomechanical mass sensors: single atom vacancies and divacancies", Sensors Actuators A Physical, 197, 111-121. https://doi.org/10.1016/j.sna.2013.04.011.   DOI
165 Pandya, H.J. and Chandra, S. (2011), "Zinc oxide nanostructures by oxidation of zinc films deposited on oxidized silicon substrate", J. Nano-Electron. Phys., 3(1), 409-413.
166 Patil, S.R. and Melnik, R.V. (2009), "Coupled electromechanical effects in II-VI group finite length semiconductor nanowires", J. Physics D Appl. Phys., 42(14), 145113. https://doi.org/10.1088/0022-3727/42/14/145113.   DOI
167 Pour, H.R., Vossough, H., Heydari, M.M., Beygipoor, G. and Azimzadeh, A. (2015), "Nonlinear vibration analysis of a nonlocal sinusoidal shear deformation carbon nanotube using differential quadrature method", Struct. Eng. Mech., 54(6), 1061-1073. https://doi.org/10.12989/sem.2015.54.6.1061.   DOI
168 Qi, J., Qian, X., Qi, L., Feng, J., Shi, D. and Li, J. (2012), "Strain-engineering of band gaps in piezoelectric boron nitride nanoribbons", Nano Letters, 12(3), 1224-1228. https://doi.org/10.1021/nl2035749.   DOI
169 Rafiee, R. and Moghadam, R.M. (2014), "On the modeling of carbon nanotubes: A critical review", Compos. Part B Eng., 56, 435-449. https://doi.org/10.1016/j.compositesb.2013.08.037   DOI
170 Rahmati, A.H. and Mohammadimehr, M. (2014), "Vibration analysis of non-uniform and non-homogeneous boron nitride nanorods embedded in an elastic medium under combined loadings using DQM", Physica B: Condensed Matter, 440, 88-98. https://doi.org/10.1016/j.physb.2014.01.036.   DOI
171 Gheshlaghi, B. and Hasheminejad, S. M. (2012), "Vibration analysis of piezoelectric nanowires with surface and small scale effects", Current Appl. Phys., 12(4), 1096-1099. https://doi.org/10.1016/j.cap.2012.01.014.   DOI
172 Agrawal, R. and Espinosa, H.D. (2011), "Giant piezoelectric size effects in zinc oxide and gallium nitride nanowires. A first principles investigation", Nano letters, 11(2), 786-790. https://doi.org/10.1021/nl104004d   DOI
173 Ahouel, M., Houari, M.S.A., Adda Bedia, E.A. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct, 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963.   DOI
174 Freitas, A., Azevedo, S. and Kaschny, J. R. (2013), "Effects of a transverse electric field on the electronic properties of single-and multi-wall BN nanotubes", Solid State Communications, 153(1), 40-45. https://doi.org/10.1016/j.ssc.2012.09.024.   DOI
175 Ganji, M. D. and Mohammadi-Nejad, A. (2008), "Simulation of STM technique for electron transport through boron-nitride nanotubes", Physics Letters A, 372(27), 4839-4844. https://doi.org/10.1016/j.physleta.2008.05.038.   DOI
176 Gao, P. X. and Wang, Z. L. (2005), "Nanoarchitectures of semiconducting and piezoelectric zinc oxide", J. Appl. Phys., 97(4), 044304. https://doi.org/10.1063/1.1847701.   DOI
177 Ghorbanpour Arani, A., Shams, S., Amir, S. and Khoddami Maraghi, Z. (2012a), "Effects of Electro-Thermal Fields on Buckling of a Piezoelectric Polymeric Shell Reinforced with DWBNNTs", J. Nanostruct., 2(3), 345-355.
178 Ghorbanpour Arani, A., Amir, S., Shajari, A. R. and Mozdianfard, M.R. (2012b), "Electro-thermo-mechanical buckling of DWBNNTs embedded in bundle of CNTs using nonlocal piezoelasticity cylindrical shell theory", Compos. Part B Eng., 43(2), 195-203. https://doi.org/10.1016/j.compositesb.2011.10.012.   DOI
179 Ghorbanpour Arani, A., Shajari, A. R., Amir, S. and Loghman, A. (2012c), "Electro-thermo-mechanical nonlinear nonlocal vibration and instability of embedded micro-tube reinforced by BNNT, conveying fluid", Physica E Low Dimensional Syst. Nanostruct., 45, 109-121. https://doi.org/10.1016/j.compositesb.2011.10.012.   DOI
180 Aissani, K., Bouiadjra, M. B., Ahouel, M. and Tounsi, A. (2015), "A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium", Struct. Eng. Mech., 55(4), 743-763. https://doi.org/10.12989/sem.2015.55.4.743.   DOI
181 Akbas, S. D. (2018), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., 6(3), 219-242. https://doi.org/10.12989/anr.2018.6.3.219.   DOI
182 Akgoz, B. and Civalek, O. (2011), "Buckling analysis of cantilever carbon nanotubes using the strain gradient elasticity and modified couple stress theories", J. Comput. Theroetical Nanosci., 8, 1821-1827. https://doi.org/10.1166/jctn.2011.1888.   DOI
183 Akgoz, B. and Civalek, O. (2013), "Buckling analysis of linearly tapered micro-columns based on strain gradient elasticity", Struct. Eng. Mech., 48(2), 195-205. https://doi.org/10.12989/sem.2013.48.2.195.   DOI
184 Akgoz, B. and Civalek O. (2017), "Effects of thermal and shear deformation on vibration response of functionally graded thick composite microbeams", Compos. Part B Eng., 129, 77-87. https://doi.org/10.1016/j.compositesb.2017.07.024.   DOI
185 Al-Basyouni, K. S., Tounsi, A. and Mahmoud, S. R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct, 125, 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070.   DOI
186 Li, X. B., Li, L., Hu, Y. J., Ding, Z. and Deng, W. M. (2017), "Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory", Compos. Struct., 165, 250-265. https://doi.org/10.1016/j.compstruct.2017.01.032.   DOI
187 Liang, X., Yang, W., Hu, S. and Shen, S. (2016), "Buckling and vibration of flexoelectric nanofilms subjected to mechanical loads", J. Phys D Appl. Phys., 49(11), 115307. https://doi.org/10.1088/0022-3727/49/11/115307.   DOI
188 Wang, Z. L. (2007), "Novel nanostructures of ZnO for nanoscale photonics, optoelectronics, piezoelectricity, and sensing", Appl. Phys. A, 88(1), 7-15. https://doi.org/10.1007/s00339-007-3942-8.   DOI
189 Ghorbanpour Arani, A., Roudbari, M. A. and Amir, S. (2012d), "Nonlocal vibration of SWBNNT embedded in bundle of CNTs under a moving nanoparticle", Physica B Condensed Matter, 407(17), 3646-3653. https://doi.org/10.1016/j.physb.2012.05.043.   DOI
190 Wang, Z., Suryavanshi, A.P. and Yu, M.F. (2006), "Ferroelectric and piezoelectric behaviors of individual single crystalline BaTiO3 nanowire under direct axial electric biasing", Appl. Phys. Lett., 89(8), 082903. https://doi.org/10.1063/1.2338015.   DOI
191 Wang, Z., Zu, X., Yang, L., Gao, F. and Weber, W. J. (2008), "Molecular dynamics simulation on the buckling behavior of GaN nanowires under uniaxial compression", Physica E Low Dimensional Syst. Nanostruct., 40(3), 561-566. https://doi.org/10.1016/j.physe.2007.08.040.   DOI
192 Wang, X. and Lee, J.D. (2010), "Nano-Piezoelectricity in BaTiO3: An Atomistic/Continuum Simulation", Adv. Sci. Lett.,, 3(4), 422-427. https://doi.org/10.1166/asl.2010.1164.   DOI
193 Wang, G.F. and Feng, X.Q. (2010), "Effect of surface stresses on the vibration and buckling of piezoelectric nanowires", Europhys. Lett., 91(5), 56007. https://doi.org/10.1209/0295-5075/91/56007   DOI
194 Wang, C.Y., Li, L.J. and Chew, Z.J. (2011), "Vibrating ZnO-CNT nanotubes as pressure/stress sensors", Physica E Low Dimensional Syst. Nanostruct., 43(6), 1288-1293. https://doi.org/10.1016/j.physe.2011.03.003.   DOI
195 Wang, J., Li, H., Li, Y., Yu, H., He, Y. and Song, X. (2011), "Deformation of copper-filled single-walled boron-nitride nanotubes under axial compression", Physica E Low Dimensional Syst. Nanostruct., 44(1), 286-289. https://doi.org/10.1016/j.physe.2011.08.024.   DOI
196 Ishii, T., Sato, T., Sekikawa, Y. and Iwata, M. (1981), "Growth of whiskers of hexagonal boron nitride", J. Crystal Growth, 52, 285-289. https://doi.org/10.1016/0022-0248(81)90206-2.   DOI
197 Hwang, H. J., Choi, W. Y. and Kang, J. W. (2005), "Molecular dynamics simulations of nanomemory element based on boron-nitride nanotube-to-peapod transition", Comput. Mater. Sci., 33(1), 317-324. https://doi.org/10.1016/j.commatsci.2004.12.068.   DOI
198 Hanifi Hachemi Amar, L., Kaci, A., Tounsi, A. (2017), "On the size-dependent behavior of functionally graded micro-beams with porosities", Struct. Eng. Mech., 64(5), 527-541. https://doi.org/10.12989/sem.2017.64.5.527.   DOI
199 Hadji, L., Hassaine Daouadji, T., Ait Amar Meziane, M., Tlidji, Y., (2016c), "Analysis of functionally graded beam using a new first-order shear deformation theory", Struct. Eng. Mech., 57(2), 315-325. http://dx.doi.org/10.12989/sem.2016.57.2.315.   DOI
200 Jafari, A., Khatibi, A. A. and Mashhadi, M. M. (2012), "Evaluation of Mechanical and Piezoelectric Properties of Boron Nitride Nanotube: A Novel Electrostructural Analogy Approach", J. Comput. Theroetical Nanosci., 9(3), 461-468. https://doi.org/10.1166/jctn.2012.2047.   DOI
201 Jiang, L. and Guo, W. (2011), "A molecular mechanics study on size-dependent elastic properties of single-walled boron nitride nanotubes", J. Mech. Phys. Solids, 59(6), 1204-1213. https://doi.org/10.1016/j.jmps.2011.03.008.   DOI
202 Jing, Y. H., Yu, K. P., Qin, X. and Shen, J. (2012), "Composition-dependent mechanical and thermal transport properties of carbon/silicon core/shell nanowires", J. Shanghai Jiaotong University (Science), 17, 743-747. https://doi.org/10.1007/s12204-012-1357-y.   DOI
203 Liu, C., Hu, S. and Shen, S. (2012), "Effect of flexoelectricity on electrostatic potential in a bent piezoelectric nanowire", Smart Mater. Struct., 21(11), 115024. https://doi.org/10.1088/0964-1726/21/11/115024.   DOI
204 Lin, H. B., Cao, M. S., Zhao, Q. L., Shi, X. L., Wang, D. W. and Wang, F. C. (2008), "Mechanical reinforcement and piezoelectric properties of nanocomposites embedded with ZnO nanowhiskers", Scripta Materialia, 59(7), 780-783. https://doi.org/10.1016/j.scriptamat.2008.06.016.   DOI
205 Lippmann, G. (1881), "Principe de la conservation de l'electricite, ou second principe de la theorie des phenomenes electriques", Journal de Physique Theorique et Appliquee, 10(1), 381-394. https://doi.org/10.1051/jphystap:0188100100038100.   DOI
206 Liu, W., Lee, M., Ding, L., Liu, J. and Wang, Z. L. (2010), "Piezopotential Gated Nanowire- Nanotube Hybrid Field-Effect Transistor", Nano Letters, 10(8), 3084-3089. https://doi.org/10.1021/nl1017145.   DOI
207 Liu, C., Ke, L. L., Wang, Y. S., Yang, J. and Kitipornchai, S. (2013), "Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory", Compos. Struct., 106, 167-174. https://doi.org/10.1016/j.compstruct.2013.05.031   DOI
208 Liu, C. and Wang, J. (2017), "Size-dependent electromechanical properties in piezoelectric superlattices due to flexoelectric effect", Theoretical Appl. Mech. Lett., 7(2), 88-92. https://doi.org/10.1016/j.taml.2017.02.007.   DOI
209 Karimi, M., Shahidi, A. R. and Ziaei-Rad, S. (2017), "Surface layer and nonlocal parameter effects on the in-phase and out-of-phase natural frequencies of a double-layer piezoelectric nanoplate under thermo-electro-mechanical loadings", Microsyst. Technol., 23(10), 4903-4915. https://doi.org/10.1007/s00542-017-3395-8.   DOI
210 Wang, X. and Shi, J. (2012), "Piezoelectric nanogenerators for self-powered nanodevices", Piezoelectric Nanomaterials for Biomedical Applications, Springer Berlin Heidelberg, Berlin, Germany. 135-172. https://doi.org/10.1007/978-3-642-28044-3_5.
211 Zhang, S., Liu, Y., Xia, M., Zhang, L., Zhang, E., Liang, R. and Zhao, S. (2008), "Long-wavelength optical phonons in single-walled boron nitride nanotubes", Physica B Condensed Matter, 403(23), 4196-4201. https://doi.org/10.1016/j.physb.2008.09.010.   DOI
212 Zhang, Y., Hong, J., Liu, B. and Fang, D. (2010), "Strain effect on ferroelectric behaviors of BaTiO3 nanowires: A molecular dynamics study", Nanotechnology, 21(1), 015701. https://doi.org/10.1088/0957-4484/21/1/015701.   DOI
213 Zhang, J., Wang, R. and Wang, C. (2012), "Piezoelectric ZnO-CNT nanotubes under axial strain and electrical voltage", Physica E Low Dimensional Syst. Nanostruct., 46, 105-112. https://doi.org/10.1016/j.physe.2012.09.001.   DOI
214 Zhang, J. and Wang, C. (2012), "Vibrating piezoelectric nanofilms as sandwich nanoplates", J. Appl. Phys., 111(9), 094303. https://doi.org/10.1063/1.4709754.   DOI
215 Zhang, L. L., Liu, J. X., Fang, X. Q. and Nie, G. Q. (2014)' "Effects of surface piezoelectricity and nonlocal scale on wave propagation in piezoelectric nanoplates", Europ. J. Mech. A/Solids, 46, 22-29. https://doi.org/10.1016/j.euromechsol.2014.01.005.   DOI
216 Zheng, X. P., Cao, Y. P., Li, B., Feng, X. Q. and Wang, G. F. (2010), "Surface effects in various bending-based test methods for measuring the elastic property of nanowires", Nanotechnology, 21(20), 205702. https://doi.org/10.1088/0957-4484/21/20/205702.   DOI
217 Zhi, C., Bando, Y., Tang, C. and Golberg, D. (2010), "Boron nitride nanotubes", Mater. Sci. Eng. R: Reports, 70(3), 92-111. https://doi.org/10.1126/science.269.5226.966.   DOI
218 Civalek, O. and Demir C. (2011), "Buckling and bending analyses of cantilever carbon nanotubes using the Euler-Bernoulli beam theory based on non-local continuum model", Asian J. Civil Eng., 12(5), 651-661.
219 Asemi, S. R. and Farajpour, A. (2014), "Thermo-electro-mechanical vibration of coupled piezoelectric-nanoplate systems under non-uniform voltage distribution embedded in Pasternak elastic medium", Current Appl. Phys., 14(5), 814-832. https://doi.org/10.1016/j.cap.2014.03.012.   DOI
220 Ciofani, G., Raffa, V., Menciassi, A. and Cuschieri, A. (2009), "Boron nitride nanotubes: An innovative tool for nanomedicine", Nano Today, 4(1), 8-10. https://doi.org/10.1016/j.nantod.2008.09.001.   DOI
221 Croft, D., Stilson, S. and Devasia, S. (1999), "Optimal tracking of piezo-based nanopositioners", Nanotechnology, 10(2), 201. https://doi.org/10.1088/0957-4484/10/2/316.   DOI
222 Curie, J. (1880), "Developpement par compression de l'electricite polaire dans les cristaux hemiedres a faces inclinees", Bull. Soc. Fr. Mineral., 3(90). https://doi.org/10.3406/bulmi.1880.1564.
223 Dai, S., Gharbi, M., Sharma, P. and Park, H. S. (2011), "Surface piezoelectricity: size effects in nanostructures and the emergence of piezoelectricity in non-piezoelectric materials", J. Appl. Phys., 110(10), 104305. https://doi.org/10.1063/1.3660431.   DOI
224 Bailey, T. and Ubbard, J. E. (1985), "Distributed piezoelectric-polymer active vibration control of a cantilever beam", J. Guidance Control Dynam., 8(5), 605-611. https://doi.org/10.2514/3.20029.   DOI
225 Zhou, J., Xu, N. S. and Wang, Z. L. (2006), "Dissolving behavior and stability of ZnO wires in biofluids: a study on biodegradability and biocompatibility of ZnO nanostructures", Adv. Mater., 18(18), 2432-2435. https://doi.org/10.1002/adma.200600200.   DOI
226 Attia, A., Bousahla, A. A., Tounsi, A., Mahmoud, S. R. and Alwabli, A. S. (2018), "A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations", Struct. Eng. Mech., 65(4), 453-464. https://doi.org/10.12989/sem.2018.65.4.453.   DOI
227 Aydin, M. (2013), "Vibrational and electronic properties of single-walled and double-walled boron nitride nanotubes", Vib. Spectroscopy, 66, 30-42. https://doi.org/10.1016/j.vibspec.2013.01.011.   DOI
228 Badr, B. M. and Ali, W. G. (2010), "Nanopositioning fuzzy control for piezoelectric actuators", J. Eng. Technol., 10, 70-74.
229 Bagheri, M., Bahari, A., Amiri, M. and Dehbandi, B. (2014), "Electronic and structural properties of Au-doped zigzag boron nitride nanotubes: A DFT study", Solid State Communications, 189, 1-4. https://doi.org/10.1016/j.ssc.2014.02.027.   DOI
230 Baima, J., Erba, A., Maschio, L., Zicovich-Wilson, C. M., Dovesi, R. and Kirtman, B. (2016), "Direct Piezoelectric Tensor of 3D Periodic Systems through a Coupled Perturbed Hartree- Fock/Kohn-Sham Method", Z. Phys. Chem., 230(5-7), 719-736. https://doi.org/10.1515/zpch-2015-0701.   DOI
231 Bando, Y., Ogawa, K. and Golberg, D. (2001), "Insulating nanocables: Invar Fe-Ni alloy nanorods inside BN nanotubes", Chem. Phys. Lett., 347(4), 349-354. https://doi.org/10.1016/S0009-2614(01)01075-2.   DOI
232 Barati, M.R. (2017), "On non-linear vibrations of flexoelectric nanobeams", J. Eng. Sci., 121, 143-153. https://doi.org/10.1016/j.ijengsci.2017.09.001.   DOI
233 Demir, C. and Civalek, O. (2017), "A new nonlocal FEM via Hermitian cubic shape functions for thermal vibration of nano beams surrounded by an elastic matrix", Compos Struct, 168, 872-884. https://doi.org/10.1016/j.compstruct.2017.02.091.   DOI
234 Dai, S. and Park, H. S. (2013), "Surface effects on the piezoelectricity of ZnO nanowires", J. Mech. Phys. Solids, 61(2), 385-397. https://doi.org/10.1016/j.jmps.2012.10.003.   DOI
235 Dehkordi, S. F. and Beni, Y. T. (2017), "Electro-mechanical free vibration of single-walled piezoelectric/flexoelectric nano cones using consistent couple stress theory", Int. J. Mech. Sci., 128, 125-139. https://doi.org/10.1016/j.ijmecsci.2017.04.004.   DOI
236 Demir, C., Mercan, K. and Civalek, O. (2016), "Determination of critical buckling loads of isotropic, FGM and laminated truncated conical panel", Composites Part B, 94, 1-10. https://doi.org/10.1016/j.compositesb.2016.03.031.   DOI
237 Razavi, H., Babadi, A.F. and Beni, Y.T. (2017), "Free vibration analysis of functionally graded piezoelectric cylindrical nanoshell based on consistent couple stress theory", Compos. Struct., 160, 1299-1309. https://doi.org/10.1016/j.compstruct.2016.10.056.   DOI
238 Refaeinejad, V., Rahmani, O. and Hosseini, S.A.H. (2017), "Evaluation of nonlocal higher order shear deformation models for the vibrational analysis of functionally graded nanostructures", Mech. Adv. Mater. Struct., 24(13), 1116-1123. https://doi.org/10.1080/15376494.2016.1227496.   DOI
239 Rezania, H. (2014), "The effect of local electronic interaction on the optical properties of boron-nitride nanotubes", Physica E Low Dimensional Syst. Nanostruct., 61, 48-52. https://doi.org/10.1016/j.physe.2014.03.014.   DOI
240 Sadek, A.S., Karabalin, R.B., Du, J., Roukes, M.L., Koch, C. and Masmanidis, S. C. (2010), "Wiring nanoscale biosensors with piezoelectric nanomechanical resonators", Nano letters, 10(5), 1769-1773. https://doi.org/10.1021/nl100245z.   DOI
241 Ghorbanpour Arani, A., Hashemian, M. and Kolahchi, R. (2013b), "Time discretization effect on the nonlinear vibration of embedded SWBNNT conveying viscous fluid", Compos. Part B Eng., 54, 298-306. https://doi.org/10.1016/j.compositesb.2013.05.031.   DOI
242 Ghorbanpour Arani, A., Kolahchi, R. and Vossough, H. (2012e), "Nonlocal wave propagation in an embedded DWBNNT conveying fluid via strain gradient theory", Physica B: Condensed Matter, 407(21), 4281-4286. https://doi.org/10.1016/j.physb.2012.07.018.   DOI
243 Ghorbanpour Arani, A., Abdollahian, M., Kolahchi, R. and Rahmati, A. H. (2013a), "Electro-thermo-torsional buckling of an embedded armchair DWBNNT using nonlocal shear deformable shell model", Compos. Part B Eng., 51, 291-299. https://doi.org/10.1016/j.compositesb.2013.03.017.   DOI
244 Ghorbanpour Arani, A., Shajari, A. R., Atabakhshian, V., Amir, S. and Loghman, A. (2013a), "Nonlinear dynamical response of embedded fluid-conveyed micro-tube reinforced by BNNTs", Compos. Part B Eng., 44(1), 424-432. https://doi.org/10.1016/j.compositesb.2012.04.025.   DOI
245 Ghorbanpour Arani, A. and Roudbari, M. A. (2013), "Nonlocal piezoelastic surface effect on the vibration of visco-Pasternak coupled boron nitride nanotube system under a moving nanoparticle", Thin Solid Films, 542, 232-241. https://doi.org/10.1016/j.tsf.2013.06.025.   DOI
246 Ansari, R., Norouzzadeh, A., Gholami, R., Faghih Shojaei, M. and Hosseinzadeh, M. (2014), "Size-dependent nonlinear vibration and instability of embedded fluid-conveying SWBNNTs in thermal environment", Physica E Low Dimensional Syst. Nanostruct., 61, 148-157. https://doi.org/10.1016/j.physe.2014.04.004.   DOI