• 제목/요약/키워드: GATE simulator

검색결과 147건 처리시간 0.022초

Performance Investigation of Insulated Shallow Extension Silicon On Nothing (ISE-SON) MOSFET for Low Volatge Digital Applications

  • Kumari, Vandana;Saxena, Manoj;Gupta, R.S.;Gupta, Mridula
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제13권6호
    • /
    • pp.622-634
    • /
    • 2013
  • The circuit level implementation of nanoscale Insulated Shallow Extension Silicon On Nothing (ISE-SON) MOSFET has been investigated and compared with the other conventional devices i.e. Insulated Shallow Extension (ISE) and Silicon On Nothing (SON) using the ATLAS 3D device simulator. It can be observed that ISE-SON based inverter shows better performance in terms of Voltage Transfer Characteristics, noise margin, switching current, inverter gain and propagation delay. The reliability issues of the various devices in terms of supply voltage, temperature and channel length variation has also been studied in the present work. Logic circuits (such as NAND and NOR gate) and ring oscillator are also implemented using different architectures to illustrate the capabilities of ISE-SON architecture for high speed logic circuits as compared to other devices. Results also illustrates that ISE-SON is much more temperature resistant than SON and ISE MOSFET. Hence, ISE-SON enables more aggressive device scaling for low-voltage applications.

Push-Pull 패스 트랜지스터 구조 및 향상된 Load Transient 특성을 갖는 LDO 레귤레이터 (A Low Drop Out Regulator with Improved Load Transient Characteristics and Push-Pull Pass Transistor Structure)

  • 권상욱;송보배;구용서
    • 전기전자학회논문지
    • /
    • 제24권2호
    • /
    • pp.598-603
    • /
    • 2020
  • 본 논문에서는 Push-Pull 패스 트랜지스터 구조로 인하여 향상된 Load Transient 특성을 향상시킨 LDO(Low Drop-Out)를 제안하였다. LDO 레귤레이터 내부의 오차증폭기의 출력단과 패스 트랜지스터의 게이트단 사이에 제안된 Push-Pull 회로와 출력단에 Push-Pull 회로를 추가하여 전압 라인에 들어오는 Overshoot, Undershoot를 개선시켜 기존의 LDO 레귤레이터보다 개선된 Load Transient 특성의 델타 피크 전압 값을 갖는다. 제안하는 회로는 Cadence의 Virtuoso, Spectre 시뮬레이션을 이용하여 삼성 0.13um 공정에서 특성을 분석하였다.

고전압 Field Stop IGBT의 최적화 설계에 관한 연구 (The Optimal Design of High Voltage Field Stop IGBT)

  • 안병섭;장란향;류용;강이구
    • 한국전기전자재료학회논문지
    • /
    • 제28권8호
    • /
    • pp.486-489
    • /
    • 2015
  • Power semiconductor device has a very long history among semiconductor, since the invention of low-pressure bipolar transistor 1947, and so far from small capacity to withstand voltage-current, high-speed and high-frequency characteristics have been developed with high function. In this study, the PWM IC Switch to the main parts used in IGBT (insulated gate bipolar transistor) for the low power loss and high drive capability of the simulator to Synopsys' T-CAD used by the 1,700 V NPT Planar IGBT, 1,700 V FS was a study of the Planar IGBT, the results confirmed that IGBT 1,700 V FS Planar is making about 11 percent less than the first designed NPT Planar IGBT.

새로운 가변 적응 상수 알고리즘을 이용한 반향제거기 설계 및 구현 (The design and implementation of echo canceller with new variable step size algorithm)

  • 최건오;윤성식;조현묵;이주석;박노경;차균현
    • 한국통신학회논문지
    • /
    • 제21권6호
    • /
    • pp.1533-1545
    • /
    • 1996
  • In this paper, the design and implementation of echo canceller with new variable step size algorithm is discussed. The method used in the new algorithm is to periodically adopt the test function which helps an optimal coefficient tracking. This algorithm outperforms LMS and VS algorithms in convergence speed and steady state error. As the period of test function is decreased, the speed of convergence is improved, but the number of calculation is increased, then the trade off between these parameters must be considered. Simulation results show new algorithm outperforms LMS and VS algorithms in convergence rate. For the design of hardware, circuit is designed with VHDL, and synthesized with Act1 withc is a FPGA library of ActelTM in use of synovation of InterGraph$^{TM}$. Verification of the synthesized circuit is carried out with simulator DLAB. The circuit based on the algorithm which is suggested in this paper calculated 7 radix places of inary number. A simulation data for the verification is based on the data of algorithm simulation. When the same input data is applied to the both simulation, output results of circuit simulation had slight difference in compare with that of algorithm simulation. The number of used gate is about 5,500 and We have 5.53MHz in maximum frequency.y.

  • PDF

Design on MPEC2 AAC Decoder

  • NOH, Jin Soo;Kang, Dongshik;RHEE, Kang Hyeon
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -3
    • /
    • pp.1567-1570
    • /
    • 2002
  • This paper deals with FPGA(Field Programmable Gate Array) implementation of the AAC(Advanced Audio Coding) decoder. On modern computer culture, according to the high quality data is required in multimedia systems area such as CD, DAT(Digital Audio Tape) and modem. So, the technology of data compression far data transmission is necessity now. MPEG(Moving Picture Experts Group) would be a standard of those technology. MPEG-2 AAC is the availableness and ITU-R advanced coding scheme far high quality audio coding. This MPEG-2 AAC audio standard allows ITU-R 'indistinguishable' quality according to at data rates of 320 Kbit/sec for five full-bandwidth channel audio signals. The compression ratio is around a factor of 1.4 better compared to MPEG Layer-III, it gets the same quality at 70% of the titrate. In this paper, for a real time processing MPEG2 AAC decoding, it is implemented on FPGA chip. The architecture designed is composed of general DSP(Digital Signal Processor). And the Processor designed is coded using VHDL language. The verification is operated with the simulator of C language programmed and ECAD tool.

  • PDF

A Two-Dimensional (2D) Analytical Model for the Potential Distribution and Threshold Voltage of Short-Channel Ion-Implanted GaAs MESFETs under Dark and Illuminated Conditions

  • Tripathi, Shweta;Jit, S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제11권1호
    • /
    • pp.40-50
    • /
    • 2011
  • A two-dimensional (2D) analytical model for the potential distribution and threshold voltage of short-channel ion-implanted GaAs MESFETs operating in the sub-threshold regime has been presented. A double-integrable Gaussian-like function has been assumed as the doping distribution profile in the vertical direction of the channel. The Schottky gate has been assumed to be semi-transparent through which optical radiation is coupled into the device. The 2D potential distribution in the channel of the short-channel device has been obtained by solving the 2D Poisson's equation by using suitable boundary conditions. The effects of excess carrier generation due to the incident optical radiation in channel region have been included in the Poisson's equation to study the optical effects on the device. The potential function has been utilized to model the threshold voltage of the device under dark and illuminated conditions. The proposed model has been verified by comparing the theoretically predicted results with simulated data obtained by using the commercially available $ATLAS^{TM}$ 2D device simulator.

Experimental Characterization-Based Signal Integrity Verification of Sub-Micron VLSI Interconnects

  • Eo, Yung-Seon;Park, Young-Jun;Kim, Yong-Ju;Jeong, Ju-Young;Kwon, Oh-Kyong
    • Journal of Electrical Engineering and information Science
    • /
    • 제2권5호
    • /
    • pp.17-26
    • /
    • 1997
  • Interconnect characterization on a wafer level was performed. Test patterns for single, two-coupled, and triple-coupled lines ere designed by using 0.5$\mu\textrm{m}$ CMOS process. Then interconnect capacitances and resistances were experimentally extracted by using tow port network measurements, Particularly to eliminate parasitic effects, the Y-parameter de-embedding was performed with specially designed de-embedding patterns. Also, for the purpose of comparisons, capacitance matrices were calculated by using the existing CAD model and field-solver-based commercial simulator, METAL and MEDICI. This work experimentally verifies that existing CAD models or parameter extraction may have large deviation from real values. The signal transient simulation with the experimental data and other methodologies such as field-solver-based simulation and existing model was performed. as expected, the significantly affect on the signal delay and crosstalk. The signal delay due to interconnects dominates the sub-micron-based a gate delay (e.g., inverter). Particularly, coupling capacitance deviation is so large (about more than 45% in the worst case) that signal integrity cannot e guaranteed with the existing methodologies. The characterization methodologies of this paper can be very usefully employed for the signal integrity verification or he electrical design rule establishments of IC interconnects in the industry.

  • PDF

Impact of Interface Charges on the Transient Characteristics of 4H-SiC DMOSFETs

  • Kang, Min-Seok;Bahng, Wook;Kim, Nam-Kyun;Ha, Jae-Geun;Koh, Jung-Hyuk;Koo, Sang-Mo
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권2호
    • /
    • pp.236-239
    • /
    • 2012
  • In this paper, we study the transient characteristics of 4H-SiC DMOSFETs with different interface charges to improve the turn-on rising time. A physics-based two-dimensional mixed device and circuit simulator was used to understand the relationship between the switching characteristics and the physical device structures. As the $SiO_2$/SiC interface charge increases, the current density is reduced and the switching time is increased, which is due primarily to the lowered channel mobility. The result of the switching performance is shown as a function of the gate-to-source capacitance and the channel resistance. The results show that the switching performance of the 4H-SiC DMOSFET is sensitive to the channel resistance that is affected by the interface charge variations, which suggests that it is essential to reduce the interface charge densities in order to improve the switching speed in 4H-SiC DMOSFETs.

Development Process of FPGA-based Departure from Nucleate Boiling Ratio Algorithm Using Systems Engineering Approach

  • Hwang, In Sok;Jung, Jae Cheon
    • 시스템엔지니어링학술지
    • /
    • 제14권2호
    • /
    • pp.41-48
    • /
    • 2018
  • This paper describes the systems engineering development process for the Departure from Nucleate Boiling Ratio (DNBR) algorithm using FPGA. Current Core Protection Calculator System (CPCS) requirement and DNBR logic are analyzed in the reverse engineering phase and the new FPGA based DNBR algorithm is designed in the re-engineering phase. FPGA based DNBR algorithm is developed by VHSIC Hardware Description Language (VHDL) in the implementation phase and VHDL DNBR software is verified in the software Verification & Validation phase. Test cases are developed to perform the software module test for VHDL software modules. The APR 1400 simulator is used to collect the inputs data in 100%, 75%, and 50% reactor power condition. Test input signals are injected to the software modules following test case tables and output signals are compared with the expected test value. Minimum DNBR value from developed DNBR algorithm is validated by KEPCO E&C CPCS development facility. This paper summarizes the process to develop the FPGA-based DNBR calculation algorithm using systems engineering approach.

FPGA application for wireless monitoring in power plant

  • Kumar, Adesh;Bansal, Kamal;Kumar, Deepak;Devrari, Aakanksha;Kumar, Roushan;Mani, Prashant
    • Nuclear Engineering and Technology
    • /
    • 제53권4호
    • /
    • pp.1167-1175
    • /
    • 2021
  • The process of automation and monitoring in industrial control system involves the use of many types of sensors. A programmable logic controller plays an important role in the automation of the different processes in the power plant system. The major control units are boiler for temperature and pressure, turbine for speed of motor, generator for voltage, conveyer belt for fuel. The power plant units are controlled using microcontrollers and PLCs, but FPGA can be the feasible solution. The paper focused on the design and simulation of hardware chip to monitor boiler, turbine, generator and conveyer belt. The hardware chip of the plant is designed in Xilinx Vivado Simulator 17.4 software using VHDL programming. The methodology includes VHDL code design, simulation, verification and testing on Virtex-5 FPGA hardware. The system has four independent buzzers used to indicate the status of the boiler, generator, turbine motor and conveyer belt in on/off conditions respectively. The GSM is used to display corresponding message on the mobile to know the status of the device in on/off condition. The system is very much helpful for the industries working on plant automation with FPGA hardware integration.