DOI QR코드

DOI QR Code

A Two-Dimensional (2D) Analytical Model for the Potential Distribution and Threshold Voltage of Short-Channel Ion-Implanted GaAs MESFETs under Dark and Illuminated Conditions

  • Tripathi, Shweta (Centre for Research in Microelectronics (CRME), Department of Electronics Engineering, Institute of Technology, Banaras Hindu University) ;
  • Jit, S. (Centre for Research in Microelectronics (CRME), Department of Electronics Engineering, Institute of Technology, Banaras Hindu University)
  • Received : 2010.11.29
  • Accepted : 2011.01.24
  • Published : 2011.03.31

Abstract

A two-dimensional (2D) analytical model for the potential distribution and threshold voltage of short-channel ion-implanted GaAs MESFETs operating in the sub-threshold regime has been presented. A double-integrable Gaussian-like function has been assumed as the doping distribution profile in the vertical direction of the channel. The Schottky gate has been assumed to be semi-transparent through which optical radiation is coupled into the device. The 2D potential distribution in the channel of the short-channel device has been obtained by solving the 2D Poisson's equation by using suitable boundary conditions. The effects of excess carrier generation due to the incident optical radiation in channel region have been included in the Poisson's equation to study the optical effects on the device. The potential function has been utilized to model the threshold voltage of the device under dark and illuminated conditions. The proposed model has been verified by comparing the theoretically predicted results with simulated data obtained by using the commercially available $ATLAS^{TM}$ 2D device simulator.

Keywords

References

  1. S. Sabat, L.D.S. Coelho, A. Abraham, “MESFET DC model parameter extraction using quantum particle swarm optimization,” Microelectronics Reliability Vol.49, No. pp.660-666, Apr., 2009. https://doi.org/10.1016/j.microrel.2009.03.005
  2. I. J.Bahl, “2.8 GHz 8-W Power Amplifier MMIC Developed Using MSAG MESFET Technology,” IEEE Microwave and Wireless Components Lett. Vol.18, No.1, pp.52-54, Jan., 2008. https://doi.org/10.1109/LMWC.2007.912021
  3. B. Y. Martynov, E. V. Pogorelova, “Influence of Substrate Purity on MESFET Parameters,” Proceedings of 17th International Crimean Conference on Microwave & Telecommunication Technology, pp.121-122, Sep., 2007.
  4. I. J. Bahl, D. Conway, “L and S-Band Compact Octave Bandwidth 4-bit MMIC Phase Shifters,” IEEE Trans. Microwave Theory Tech. Vol.56, No.2 , pp.293-299, Feb., 2008. https://doi.org/10.1109/TMTT.2007.914636
  5. V. Eveloy, H. Yu-Chul, “The Effect of Electrostatic Discharge on Electrical Overstress Susceptibility in a Gallium Arsenide MESFET-Based Device,” IEEE Trans. on Dev. and Mater. Reliability Vol.7, No.1, pp.200-208, Mar., 2007. https://doi.org/10.1109/TDMR.2007.891529
  6. J. A Torres, J. C. Freire, “Monolithic transistor SPST switch for L-band,” IEEE Trans. Microwave Theory Tech. Vol.50, No.1, pp.51-56, Jan., 2002. https://doi.org/10.1109/22.981245
  7. F. Ellinger, R. Vogt, “Ultra compact, low loss, varactor tuned phase shifter MMIC at C-band,” IEEE Microwave and Wireless Components Lett. Vol.11, No.3, pp.104-105, Mar., 2001. https://doi.org/10.1109/7260.915615
  8. C. H. Lee, S. Han, “A low phase noise X-band MMIC GaAs MESFET VCO,” IEEE Microwave and Guided Wave Lett. Vol.10, No.8, pp.325-327, Aug., 2000. https://doi.org/10.1109/75.862229
  9. T. L. Nguyen, A. P. Freundorfer, “A balanced distributed preamplifier using MMIC GaAs MESFET technology,” IEEE Photonics Tech. Lett. Vol.9, No.4, pp.499-501, Apr., 1997. https://doi.org/10.1109/68.559401
  10. J. M. Zamanillo, J. Portilla, C. Navarro, C. Perez-Vega., “Optical Ports: Next generation of MMIC control devices,” Proceedings of 35th European Microwave Conference (EuMC), pp.1391-1394, Oct., 2005.
  11. A. P. Freundorfer, D. H. Choi, “Adaptive transversal preamplifier for high speed lightwave systems,” IEEE Microwave and Wireless Components Lett. Vol.11, No.7, pp.293-295, July, 2001. https://doi.org/10.1109/7260.933775
  12. J. Rodriguez-Tellez, K. A. Mezheg, N T. AIi, T. Fernandei, A. Mediavilla, A. Tazon, C. Navarro, “Optically controlled 2.4GHz MMIC Amplifier,” Proceedings of 10th International Conference on Electronics, Circuits & Systems (ICECS), pp.970-973, Dec., 2003.
  13. M. A. Alsunaidi, “Optoelectronic conversion of short pulses in sub micrometer GaAs active devices,” Opt. Quant. Electronics Vol.40, No.9, pp.685-694, July, 2008. https://doi.org/10.1007/s11082-008-9256-z
  14. J. M. Zamanillo, J. Portilla, C. Navarro, C. Perez-Vega, “Optoelectronic control of a MMIC VCO at Ku band,” Proceedings of the 5th WSEAS International Conference on Electronics, Hardware, Wireless and Optical Communications, pp.138-141, Feb. 2007.
  15. S. Jit, B. B. Pal, “A new Optoelectronic Integrated Device for Light-Amplifying Optical Switch (LAOS),” IEEE Trans. Electron Device Vol.48, No.12, pp.2732-2739, Dec., 2001. https://doi.org/10.1109/16.974697
  16. S. Kawasaki, H. Shiomi, “A novel FET model including an illumination intensity parameter for simulation of optically controlled millimeter-wave oscillators,” IEEE Trans. Microwave Theory Tech. Vol.46, No.6, pp.820-828, June, 1998. https://doi.org/10.1109/22.681206
  17. I. W.Smith, R. C. Sharp, “Demonstration of photonically controlled GaAs digital/MMIC for RF optical links,” IEEE Trans. Microwave Theory Tech, Vol.45, No.1, pp.15-22, Jan., 1997. https://doi.org/10.1109/22.552027
  18. S. Bose, M. Gupta, R.S. Gupta, “Cut-off frequency and optimum noise figure of GaAs optically controlled FET,” Microwave Opt. Technol. Lett. Vol.26, No.5, pp.279-282, Sep., 2000. https://doi.org/10.1002/1098-2760(20000905)26:5<279::AID-MOP1>3.0.CO;2-0
  19. S. Bose, Adarsh, R.S. Gupta, “Unilateral power gain of optically biased GaAs MESFET,” Appl Microwave Wireless , Vol.13, No.8, pp.68-77, Aug., 2001.
  20. Madjar, A. Paolella, P. R. Herczfeld, “Analytical model for optically generated currents in GaAs MESFETs,” IEEE Trans. Microwave Theory Tech. Vol.40, No.8, pp.1681-1691, Aug., 1992. https://doi.org/10.1109/22.149548
  21. P. Chakrabarti, A. Gupta, N. A. Khan, “An Analytical Model of GaAs OPFET,” Solid-State Electronics Vol.39, No.10, pp.1481-1490, Oct., 1996. https://doi.org/10.1016/0038-1101(96)00061-5
  22. A. A. De Salles, Optical control of GaAs MESFETs, IEEE Trans. Microwave Theory Tech. Vol.31, No.10, pp.812-820, Oct., 1983. https://doi.org/10.1109/TMTT.1983.1131611
  23. S. Mishra, V. K. Singh, B. B. Pal, “Effect of radiation and surface recombination on the characteristics of an ion -implanted GaAs MESFET,” IEEE Trans. Electron Device Vol.37, No.1, pp.2-10, Jan., 1990. https://doi.org/10.1109/16.43794
  24. S. Bose, Adarsh, Ritesh Gupta, Mridula Gupta and R S Gupta “Model for optically biased Short channel GaAs MESFET,” Microwave Opt. Technol. Lett. Vol.32, No.2, pp.138-142, Jan., 2002. https://doi.org/10.1002/mop.10113
  25. S. Bose, M. Gupta, R.S. Gupta, “$I_d-V_d$ characterristics of optically biased short channel GaAs MESFET,” Microelectron J Vol.32, No.3, pp.241-247, Mar., 2001. https://doi.org/10.1016/S0026-2692(00)00120-8
  26. P. Calvani, A. Corsaro, “Microwave operation of sub-micrometer gate surface channel MESFETs in polycrystalline diamond,” Microwave Opt. Technol. Lett. Vol.51, No.11, pp.2786-2788, Nov., 2009. https://doi.org/10.1002/mop.24738
  27. E. Donkor, F. C. Jain, “An Analytical Two-Dimensional Perturbation Method to Model Submicron GaAs MESFETs,” IEEE Trans. Microwave Theory Tech. Vol.37, No.9, pp.1484-1487, Sep., 1989. https://doi.org/10.1109/22.32237
  28. N. Kato, K. Yamasaki, K. Asai, K. Ohwada, “Electron beam lithography in n+ self-aligned GaAs MESFET fabrication,” IEEE Trans. Electron Device Vol.30, No.6 , pp.663-668, June, 1983. https://doi.org/10.1109/T-ED.1983.21186
  29. P. C. Chao, P. M. Smith, S. Wanuga, W. H. Perkins, E. D. Wolf, “Channel length effects in quarter micrometer gate-length GaAs MESFETs,” IEEE Electron Device Lett. Vol.4, No.9, pp.326-328, Sep., 1983. https://doi.org/10.1109/EDL.1983.25750
  30. C. H. Liu, L. W. Wu, S. J. Chang, J. F. Chen, U. H. Liaw, S. C. Chen, “Ion-implantation technology for improved GaAs MESFETs performance,” J. of Mater. Sci.:Mater in Electronics Vol.15, No.2, pp.91-93, Feb., 2004. https://doi.org/10.1023/B:JMSE.0000005382.12404.eb
  31. A. Dasgupta, S. K. Lahiri, “A novel analytical threshold voltage model of MOSFETs with implanted channels,” Int. J. Electronics Vol.61, No.5, pp.655-669, May, 1986. https://doi.org/10.1080/00207218608920909
  32. ATLAS: Silvaco International 2008.
  33. S. A Bashar “Study of Indium Tin Oxide(ITO) for Novel Optoelectronic Devices,” PhD Thesis, King’s College of London, University of London, 1998.
  34. S.M. Sze, Physics of semiconductor devices,second ed., Wiley, New York, 1981.
  35. A. Dasgupta, S. K. Lahiri, “A two-dimensional analytical model of threshold voltages of shortchannel MOSFETs with Gaussian-doped channels,” IEEE Trans. Electron Device Vol.35, No.3, pp.390-392, Mar., 1988. https://doi.org/10.1109/16.2468
  36. S. Kabra, H. Kaur, S. Haldar, M. Gupta, R.S. Gupta, “Two-dimensional subthreshold analysis of submicron GaN MESFET,” Microelectronics Journal Vol.38, No.4 pp.547-555, Apr., 2007. https://doi.org/10.1016/j.mejo.2007.03.006
  37. S. Jit, G. Bandhawakar, B. B. Pal, “Analytical Modeling of a DCFL Inverter Using Normally-off GaAs MESFETs Under Dark and Illuminated Conditions,” Solid-State Electronics Vol.49, No.4, pp.628-633, Feb., 2005. https://doi.org/10.1016/j.sse.2005.01.014
  38. K.N. Ratnakumar, J.D. Meindel, “Short channel MOST threshold voltage model,” IEEE J. Solid State Circuits Vol.17, No.5, pp.937-947, Oct., 1982. https://doi.org/10.1109/JSSC.1982.1051843
  39. E. Kreyszig, Advanced Engineering Mathematics, seventh ed., Wiley, New York, 1993.
  40. S. P. Chin, C. Y. Wu, “A new two dimensional model for the potential distribution of short gate length MESFETs and its application,” IEEE Trans. Electron Device Vol.39, No.8, pp.1928-1937 Aug., 1992. https://doi.org/10.1109/16.144686
  41. Michael Shur, GaAs devices and circuits, Plenum Press, New York, 1986.
  42. I. D. Parker, “Carrier tunneling and device characteristics in polymer light-emitting diodes,” J. Appl. Phys. Vol.75, No.3, pp.1656-1666, Feb., 1994. https://doi.org/10.1063/1.356350
  43. J. Szczyrbowski, “A. Dietrich and H. Hoffmann, Optical and Electrical Properties of r.f. Sputtered Indium-Tin Oxide Films,” Phys Stat Sol (a), Vol.78, No.1, pp.243-252, July, 1983. https://doi.org/10.1002/pssa.2210780129