Browse > Article
http://dx.doi.org/10.5370/JEET.2012.7.2.236

Impact of Interface Charges on the Transient Characteristics of 4H-SiC DMOSFETs  

Kang, Min-Seok (Dept. of Electronic Materials Engineering, Kwangwoon University)
Bahng, Wook (Korea Electrotechnology Research Institute, Power Semiconductor Research Group)
Kim, Nam-Kyun (Korea Electrotechnology Research Institute, Power Semiconductor Research Group)
Ha, Jae-Geun (Dept. of Electronic Materials Engineering, Kwangwoon University)
Koh, Jung-Hyuk (Dept. of Electronic Materials Engineering, Kwangwoon University)
Koo, Sang-Mo (Dept. of Electronic Materials Engineering, Kwangwoon University)
Publication Information
Journal of Electrical Engineering and Technology / v.7, no.2, 2012 , pp. 236-239 More about this Journal
Abstract
In this paper, we study the transient characteristics of 4H-SiC DMOSFETs with different interface charges to improve the turn-on rising time. A physics-based two-dimensional mixed device and circuit simulator was used to understand the relationship between the switching characteristics and the physical device structures. As the $SiO_2$/SiC interface charge increases, the current density is reduced and the switching time is increased, which is due primarily to the lowered channel mobility. The result of the switching performance is shown as a function of the gate-to-source capacitance and the channel resistance. The results show that the switching performance of the 4H-SiC DMOSFET is sensitive to the channel resistance that is affected by the interface charge variations, which suggests that it is essential to reduce the interface charge densities in order to improve the switching speed in 4H-SiC DMOSFETs.
Keywords
4H-SiC; DMOSFET; Mixed-mode; Transient; Interface charge;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 O.J, Guy, M. Lodzinski, K.S. Teng, T.G.G Maffeis, M. Tan, I. Blackwood, P.R. Dunstan, O. Al-Hartony, S.P Wilks, T. Wilby, N. Rimmer, D. Lewis, and J. Hopkins, Appl. Surf. Sci. 254, p. 8098, 2008.   DOI   ScienceOn
2 R. habchi, C. salame, A. Khoury, and P. Mialhe, Appl. Phys. Lett. 88, p. 153503, 2006.   DOI   ScienceOn
3 S. Hino, T. Hatayama, J. Kato, E. Tokumitsu, N. Miura, and T. Oomori, Appl. Phys. Lett. 92, p. 183503, 2008.   DOI   ScienceOn
4 A. Saha, and James A. Cooper, IEEE Trans. Electron Devices 54, p. 2786, 2007.   DOI   ScienceOn
5 K. Matocha, Solid-State Electron. 52 (2008), p. 1631.   DOI   ScienceOn
6 A. Saha and James A. Cooper, IEEE Trans. Electron Devices 54, p. 2786, 2007.   DOI   ScienceOn
7 M. Martin, A. Saha, and James A. cooper, IEEE Trans. Electron Devices 51, p. 1721, 2004.   DOI   ScienceOn
8 T. Tamaki, Ginger G. Walden, Y. Sui, and James A. Cooper, IEEE Trans. Electron Devices 55, p. 1920, 2008.   DOI   ScienceOn
9 Y. C. Choi, H. Y. Cha, Lester F. Eastman, and Michael G. Spencer, IEEE Trans. Electron Devices 52, p. 1940, 2005.   DOI   ScienceOn
10 S. H. Ryu, A. Agarwal, J. Richmond, J. Palmour, N. Saks, and J. Williams IEEE Trans. Electron Devices 23, p. 321, 2002.   DOI   ScienceOn
11 S. Inaba, T. Mizuno, M. Iwase, M. Takahashi, H. Niiyama, H. Hazama, M. Yoshimi, and A. Toriumi, IEEE Trans. Electron Devices 41, p. 2399, 1994.   DOI   ScienceOn
12 K. Sheng, Y. Zhang, M. Su, J. H. Zhao, X. Li, P. Alexandrov, L. Fursin, Solid-State Electron. 52, p. 1636, 2008.   DOI   ScienceOn