• Title/Summary/Keyword: GARCH

Search Result 314, Processing Time 0.022 seconds

Continuous Time Approximations to GARCH(1, 1)-Family Models and Their Limiting Properties

  • Lee, O.
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.4
    • /
    • pp.327-334
    • /
    • 2014
  • Various modified GARCH(1, 1) models have been found adequate in many applications. We are interested in their continuous time versions and limiting properties. We first define a stochastic integral that includes useful continuous time versions of modified GARCH(1, 1) processes and give sufficient conditions under which the process is exponentially ergodic and ${\beta}$-mixing. The central limit theorem for the process is also obtained.

Modelling KOSPI200 Data Based on GARCH(1,1) Parameter Change Test

  • Park, Si-Yun;Lee, Sang-Yeol
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.1
    • /
    • pp.11-16
    • /
    • 2007
  • Since the seminal work of Engle (1982), many researchers and practitioners have developed ARCH-type models to deal with volatility modelling, which, for instance, is crucial to perform the task of derivative pricing, measuring risk, and risk hedging. In this paper, we base the GARCH(1,1) model to analyze the KOSPI200 data, and perform the CUSUM test for detecting parameter changes in the GARCH model. It is shown that the data suffers from a parameter change.

  • PDF

On geometric ergodicity and ${\beta}$-mixing property of asymmetric power transformed threshold GARCH(1,1) process

  • Lee, Oe-Sook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.2
    • /
    • pp.353-360
    • /
    • 2011
  • We consider an asymmetric power transformed threshold GARCH(1.1) process and find sufficient conditions for the existence of a strictly stationary solution, geometric ergodicity and ${\beta}$-mixing property. Moments conditions are given. Box-Cox transformed threshold GARCH(1.1) is also considered as a special case.

Volatility of Export Volume and Export Value of Gwangyang Port (광양항의 수출물동량과 수출액의 변동성)

  • Mo, Soo-Won;Lee, Kwang-Bae
    • Journal of Korea Port Economic Association
    • /
    • v.31 no.1
    • /
    • pp.1-14
    • /
    • 2015
  • The standard GARCH model imposing symmetry on the conditional variance, tends to fail in capturing some important features of the data. This paper, hence, introduces the models capturing asymmetric effect. They are the EGARCH model and the GJR model. We provide the systematic comparison of volatility models focusing on the asymmetric effect of news on volatility. Specifically, three diagnostic tests are provided: the sign bias test, the negative size bias test, and the positive size bias test. This paper shows that there is significant evidence of GARCH-type process in the data, as shown by the test for the Ljung-Box Q statistic on the squared residual data. The estimated unconditional density function for squared residual is clearly skewed to the left and markedly leptokurtic when compared with the standard normal distribution. The observation of volatility clustering is also clearly reinforced by the plot of the squared value of residuals of export volume and values. The unconditional variance of both export volumes and export value indicates that large shocks of either sign tend to be followed by large shocks, and small shocks of either sign tend to follow small shocks. The estimated export volume news impact curve for the GARCH also suggests that $h_t$ is overestimated for large negative and positive shocks. The conditional variance equation of the GARCH model for export volumes contains two parameters ${\alpha}$ and ${\beta}$ that are insignificant, indicating that the GARCH model is a poor characterization of the conditional variance of export volumes. The conditional variance equation of the EGARCH model for export value, however, shows a positive sign of parameter ${\delta}$, which is contrary to our expectation, while the GJR model exhibits that parameters ${\alpha}$ and ${\beta}$ are insignificant, and ${\delta}$ is marginally significant. That indicates that the asymmetric volatility models are poor characterization of the conditional variance of export value. It is concluded that the asymmetric EGARCH and GJR model are appropriate in explaining the volatility of export volume, while the symmetric standard GARCH model is good for capturing the volatility.

Analysis of Multivariate-GARCH via DCC Modelling (DCC 모델링을 이용한 다변량-GARCH 모형의 분석 및 응용)

  • Choi, S.M.;Hong, S.Y.;Choi, M.S.;Park, J.A.;Baek, J.S.;Hwang, S.Y.
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.5
    • /
    • pp.995-1005
    • /
    • 2009
  • Conditional correlation between financial time series plays an important role in risk management, asset allocation and portfolio selection and therefore diverse efforts for modeling conditional correlations in multivariate-GARCH processes have been made in last two decades. In particular, CCC (cf. Bollerslev, 1990) and DCC(dynamic conditional correlation, cf. Engle, 2002) models have been commonly used since they are relatively parsimonious in the number of parameters involved. This article is concerned with DCC modeling for multivariate GARCH processes in comparison with CCC specification. Various multivariate financial time series are analysed to illustrate possible advantages of DCC over CCC modeling.

Comparing Among GARCH-VaR Models and Distributions from Korean Stock Market (KOSPI) :Focusing on Long and Short Positions (한국 KOSPI시장의 GARCH-VaR 측정모형 및 분포간 성과평가에 관한 연구:롱 및 숏 포지션 전략을 중심으로)

  • Son, Pan-Do
    • The Korean Journal of Financial Management
    • /
    • v.25 no.4
    • /
    • pp.79-116
    • /
    • 2008
  • This paper examines and estimates GARCH-VaR models (RiskMetrics, GARCH, IGARCH, GJR and APARCH) with three different distributions such as Gaussian normal, Student-t, Skewness Student-t Distribution using the daily price data from Korean Stock Market during Jan. 1, 1980-Sept. 30, 2004. It also compares them. In-sample test, this finds that for all confidence level as $90%{\sim}99.9%$, the performance and accuracy of IGARCH with ${\lambda}=0.87$ and skewness Student-t distribution are superior to other models and distributions in long position, but GARCH and GJR with Skewness Student-t distribution in short position. For above 99% confidence level, the performance and accuracy of IGARCH with ${\lambda}=0.87$ in both long and short positions are superior to other models and distributions, but Skewness Student-t distribution for long position and Student-t distribution for short position are more accuracy and superior to other distributions. In-out-of sample test, these results also confirm the evidences that the above findings are consistent as well.

  • PDF

The GARCH-GPD in market risks modeling: An empirical exposition on KOSPI

  • Atsmegiorgis, Cheru;Kim, Jongtae;Yoon, Sanghoo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.6
    • /
    • pp.1661-1671
    • /
    • 2016
  • Risk analysis is a systematic study of uncertainties and risks we encounter in business, engineering, public policy, and many other areas. Value at Risk (VaR) is one of the most widely used risk measurements in risk management. In this paper, the Korean Composite Stock Price Index data has been utilized to model the VaR employing the classical ARMA (1,1)-GARCH (1,1) models with normal, t, generalized hyperbolic, and generalized pareto distributed errors. The aim of this paper is to compare the performance of each model in estimating the VaR. The performance of models were compared in terms of the number of VaR violations and Kupiec exceedance test. The GARCH-GPD likelihood ratio unconditional test statistic has been found to have the smallest value among the models.

Stationary Bootstrap Prediction Intervals for GARCH(p,q)

  • Hwang, Eunju;Shin, Dong Wan
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.1
    • /
    • pp.41-52
    • /
    • 2013
  • The stationary bootstrap of Politis and Romano (1994) is adopted to develop prediction intervals of returns and volatilities in a generalized autoregressive heteroskedastic (GARCH)(p, q) model. The stationary bootstrap method is applied to generate bootstrap observations of squared returns and residuals, through an ARMA representation of the GARCH model. The stationary bootstrap estimators of unknown parameters are defined and used to calculate the stationary bootstrap samples of volatilities. Estimates of future values of returns and volatilities in the GARCH process and the bootstrap prediction intervals are constructed based on the stationary bootstrap; in addition, asymptotic validities are also shown.