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Abstract
The stationary bootstrap of Politis and Romano (1994) is adopted to develop prediction intervals of returns

and volatilities in a generalized autoregressive heteroskedastic (GARCH)(p, q) model. The stationary bootstrap
method is applied to generate bootstrap observations of squared returns and residuals, through an ARMA repre-
sentation of the GARCH model. The stationary bootstrap estimators of unknown parameters are defined and used
to calculate the stationary bootstrap samples of volatilities. Estimates of future values of returns and volatilities
in the GARCH process and the bootstrap prediction intervals are constructed based on the stationary bootstrap;
in addition, asymptotic validities are also shown.
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1. Introduction

For accessing the risks of financial assets, valid predictions of future returns as well as future volatil-
ities are essential. For that purpose, among many time series models, the generalized autoregressive
heteroskedastic (GARCH) model is one of the most successful one. Baillie and Bollerslev (1992)
studied prediction error distribution in the GARCH(1, 1) model with known parameter values. Ander-
sen and Bollerslev (1998) provided an empirical study to showe that the GARCH model is good for
predicting future volatilities. Andersen et al. (2001) proposed models and methods to predict realized
volatilities. Engle and Patton (2001) compared several volatility models including GARCH(1, 1) for
forecasting volatilities.

In order to have more understanding of the risks, we need to know sampling distributions of
predictions from which we can construct prediction intervals, Value at Risk (VaR), and others. Even
though GARCH models allow the simple constructions of predictions, the mathematical analysis of
the sampling distribution would be difficult if the estimated GARCH parameters are plugged-in in
constructing the predictions. All the above studies for the prediction assumed given parameter values.

Bootstrapping methods are practical alternatives to mathematical analysis in understanding sam-
pling distributions of predictions that address variations due to estimated parameters. Miguel and
Olave (1999) and Reeves (2005) proposed bootstrapping ARCH(p) prediction intervals for future re-
turns. Pascual et al. (2006) developed GARCH(1, 1) prediction intervals for returns and volatilities.
Chen et al. (2011) developed a computationally efficient GARCH(1, 1) bootstrap prediction intervals
for returns and volatilities.

However, all the above studies of the bootstrap GARCH predictions did not provide mathematical
justification for their bootstrapping methods. Our aim is to construct a mathematically valid boot-
strapping method for prediction intervals of future returns and future volatilities. The validity is more
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important for risk analysis because an invalid method would provide misleading information about
risk. For example an invalid method for VaR would not guarantee the given level (1% or 5%, for
example).

We adopt the stationary bootstrapping proposed by Politis and Romano (1994). The stationary
bootstrapping is a block resampling method with an increasing random block length that has attracted
several authors with recent applications, such as Swensen (2003), Paparoditis and Politis (2005),
Parker et al. (2006) for unit root tests, and Hwang and Shin (2011, 2012a) for nonparametric anal-
yses. Lahiri (1999), Nordman (2009) and Hwang and Shin (2012b) analyzed new properties of the
stationary bootstrap. In our stationary bootstrapping method, the dependence structure of the original
data is transferred to the bootstrapping sample by resampling blocks. On the other hand, in the boot-
strappings of Miguel and Olave (1999), Reeves (2005), Pascual et al. (2006), Chen et al. (2011) for
GARCH predictions, the dependence structure is transferred to the bootstrapping sample by iterating
the GARCH model using normally bootstrapped residuals.

Our method utilizes squares of GARCH processes that have ARMA representations which in turn
have long-AR representations. Under the ARMA+AR representation, parameter estimation is linear,
which allows us to develop a mathematically valid bootstrapping procedure.

We consider a stationary GARCH(p, q) process defined by (2.1) and (2.2) below. The GARCH
model is represented as a form of ARMA. Given a realization of the past observations, the ordinary
least square estimators of the ARMA model via long-AR approach are first constructed and residuals
are computed. The stationary bootstrap method is applied to generate stationary bootstrap sample
of returns, and these data are used to develop the stationary bootstrap estimators, from which the
bootstrap sample of volatilities are calculated; in addition, the classical bootstrap residuals are used
for estimated i.i.d. errors. It is shown that the stationary bootstrap estimators have the same limiting
distribution of the ordinary least squares estimators.

Using the stationary bootstrap estimators and the bootstrap samples of returns and volatilities, we
obtain bootstrap future values of returns and volatilities of the GARCH process. Slutsky’s Theorem
and mathematical induction shows that the sampling distribution of the stationary bootstrap future
values converges in probability to the distribution of the unknown future value. The stationary boot-
strap prediction intervals for returns and volatilities of the GARCH process are constructed by means
of bootstrap replicates and quantiles of the Monte Carlo estimates of the bootstrap distributions. By
the fundamental weak consistency, the asymptotic validities of the stationary bootstrap prediction
intervals are established.

The paper is organized as follows. In Section 2, the stationary bootstrap procedure is described.
An algorithm is given for developing the stationary bootstrap estimator of unknown parameters and
for constructing the stationary bootstrap prediction intervals of future values of the GARCH process.
In Section 3, asymptotic results of the estimators and the prediction intervals are given along with the
proofs.

2. Stationary Bootstrapping and Prediction Intervals

We consider a GARCH(p, q) process, {yt}Tt=1, (for p, q ≥ 1), satisfying, for t = 1, . . . ,T

yt = σtϵt, (2.1)

σ2
t = α0 +

p∑
i=1

αiy2
t−i +

q∑
j=1

β jσ
2
t− j, (2.2)



Stationary Bootstrap Prediction Intervals for GARCH(p, q) 43

where {ϵt}Tt=1 is a sequence of independent, identically distributed (i.i.d.) random variables with zero
mean, unit variance and E(ϵ4

t ) < ∞, and α0, αi and β j are unknown parameters satisfying α0 ≥ 0,
αi ≥ 0 and β j ≥ 0, for i = 1, . . . , p and j = 1, . . . , q. Note that the condition E(ϵ4

t ) < ∞ implies
E(y4

t ) < ∞. In the stochastic process {σt}Tt=1 generated by (2.2), σt is independent of ϵt, ϵt+1, . . . , ϵT . In
financial contexts, {yt}Tt=1 and {σt}Tt=1 are referred to as return and volatility processes. If q = 0, {yt}Tt=1
is an ARCH(p) process.

In this work we construct the prediction intervals for returns and volatilities of GARCH(p, q)
process using the stationary bootstrap. In Section 2.1, the stationary bootstrap procedure of Politis
and Romano (1994) is described. In Section 2.2, an algorithm is given to develop the bootstrap
prediction intervals. First, the GARCH model is represented in an ARMA form of squared returns
and then the coefficients of the ARMA form is estimated by the ordinary squares estimator via a long-
AR representation. Using the stationary bootstrap observations, the stationary bootstrap estimators of
the ARMA coefficients (and thus the GARCH coefficients) are obtained. From the bootstrap estimated
coefficients, the bootstrap sample of volatilities is calculated and then the bootstrap future values of
returns and volatilities are obtained. The stationary bootstrap prediction intervals are constructed
by the Monte Carlo estimates of the bootstrap distribution of the future values. In Section 3 the
consistency results and the large sample validity are given along with the proofs.

2.1. The stationary bootstrap method

Suppose that {Yt} is a stationary weakly dependent time series taking values in Rk for some k ≥ 1. Let
Y1, . . . ,Yn be observed. First we define a new time series {Yni : i ≥ 1} by a periodic extension of the
observed data set as follows. For each i ≥ 1, define Yni := Y j where j is such that i = qn + j for some
integer q ≥ 0. The sequence {Yni : i ≥ 1} is obtained by wrapping the data Y1, . . . ,Yn around a circle,
and relabeling them as Yn1,Yn2, . . . . Next, for a positive integer l, define the blocks B(i, l), i ≥ 1
as B(i, l) = {Yni, . . . ,Yn(i+l−1)} consisting of l observations starting from Yni. Bootstrap observations
under the stationary bootstrap method are obtained by selecting a random number of blocks from
collection {B(i, l) : i = 1, . . . , n, l ≥ 1}. To do this, we generate random variables I1, . . . , In and
L1, . . . , Ln such that conditional on the observations Y1, . . . ,Yn,

(i) I1, . . . , In are i.i.d. discrete uniform on {1, . . . , n}: P∗(I1 = i) = 1/n, i = 1, . . . , n,

(ii) L1, . . . , Ln are i.i.d. random variables having the geometric distribution with a parameter ρ ∈
(0, 1): P∗(L1 = l) = ρ(1 − ρ)l−1, l = 1, 2, . . . , where ρ = ρ(n) depends on the sample size n.

(iii) the collections {I1, . . . , In} and {L1, . . . , Ln} are independent.

Here and in the following, P∗ and E∗ denote, respectively, the conditional probability and the
conditional expectation, given Y1, . . . ,Yn. For notational simplicity, we suppress dependence of the
variables I1, . . . , In, L1, . . . , Ln and of the parameter ρ on n. We assume that ρ goes to 0 as n → ∞.
Under the stationary bootstrap the block length variables L1, . . . , Ln are random and the expected block
length E∗L1 is ρ−1, which tends to∞ as n→ ∞. Now, a pseudo-time series Y∗1, . . . ,Y

∗
n is generated in

the following way. Let τ = inf{k ≥ 1 : L1+· · ·+Lk ≥ n}, and select the τ blocks B(I1, L1), . . . , B(Iτ, Lτ).
Note that there are L1 + · · · + Lτ elements in the resampled blocks B(I1, L1), . . . , B(Iτ, Lτ). Arranging
these elements in a series and deleting the last L1 + · · · + Lτ − n elements, we get the bootstrap
observations Y∗1, . . . ,Y

∗
n. Conditionally on {Y1, . . . ,Yn}, {Y∗t } is stationary.
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2.2. Stationary bootstrap prediction intervals

In order to construct the stationary bootstrap prediction intervals, we give an algorithm with eight
steps below. Through the algorithm, we develop the stationary bootstrap estimators of the coefficients
of the GARCH model, the bootstrap future values of returns and volatilities, and then the bootstrap
prediction intervals.

We assume that the GARCH(p, q) process is strictly stationary. Note that we can find necessary
and sufficient condition for the strictly stationarity of the GARCH(p, q) process from Bougerol and
Picard (1992a, 1992b).

The GARCH(p, q) process can be represented in an ARMA form as in Chen et al. (2011): letting
νt = y2

t − σ2
t ,

y2
t = α0 +

ℓ∑
i=1

(αi + βi)y2
t−i + νt −

q∑
j=1

β jνt− j, (2.3)

where ℓ = max(p, q), αi = 0 for i > p, βi = 0 for i > q, and {νt}Tt=1 is a white noise under the condition
E(y4

t ) < ∞, but not i.i.d. in general. Under the strictly stationary assumption of {yt}Tt=1, {νt}Tt=1 is
identically distributed.

Here we start from the ARMA model of (2.3) in the following algorithm for developing prediction
intervals for returns and volatilities in GARCH(p, q) processes. Let {y1−ℓ, . . . , y0, y1, . . . , yn} be a
realization of the GARCH(p, q) process from (2.1) and (2.2).

Step 1. Estimate the ARMA coefficients in (2.3) by α̂0, ̂(α1 + β1), . . . , ̂(αℓ + βℓ), β̂1, . . . , β̂q, using the
least squares estimation of ARMA models similarly to Koreisha and Pukkila (1990) and Kava-
lieris et al. (2003).

We summarize the least squares estimation of ARMA models. Stationary and invertible
ARMA(p, q) model can be expressed as an infinite autoregression: thus (2.3) can be written as
y2

t =
∑∞

j=1 π jy2
t− j + νt. Just as in Koreisha and Pukkila (1990) and Kavalieris et al. (2003), first

estimate the innovations νt by ν̃t through a long-autoregression (LAR) y2
t =

∑L
j=1 π̃ jy2

t− j+ν̃t for
which π j values beyond the lag L are assumed to be effectively zero. According to Kavalieris,
et al. (2003), if

log n
2 log δ

≤ L < H = o

( n
log n

) 1
2
 , (2.4)

where δ is the modulus of a zero of the generating function β(z) = 1 − ∑q
j=1 β jz j nearest

|z| = 1, {ηt := νt − ν̃t} do behave asymptotically like independent random variables; see (2.5)
and (2.6) in Kavalieris et al. (2003), and the equation in (2.3) results in a regression equation
in (2.5) below with moving-average residuals of order q which can be effectively estimated
using least squares.

For t = 1, 2, . . . , n

y2
t − ν̃t = α0 +

ℓ∑
i=1

(αi + βi)y2
t−i −

q∑
j=1

β jν̃t− j +

ηt −
q∑

j=1

β jηt− j

 , (2.5)
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where {ηt} are random white noises. In other words, for t = 1, 2, . . . , n

zt = Xtϕ + ξt,

where zt = y2
t − ν̃t,

Xt =
(
1, y2

t−1, . . . , y
2
t−ℓ, ν̃t−1, . . . , ν̃t−q

)
,

ϕ =
(
α0, α1 + β1, . . . , αℓ + βℓ,−β1, . . . ,−βq

)′
and ξt = ηt −

∑q
j=1 β jηt− j.

Using the defined zt,Xt and ξt values, we construct the following matrix form:

Z = Xϕ + ξ,

where Z = (z1, . . . , zn)′, ξ = (ξ1, . . . , ξn)′ and

X =


1 y2

0 · · · y2
1−ℓ ν̃0 · · · ν̃1−q

1 y2
1 · · · y2

2−ℓ ν̃1 · · · ν̃1−q
...

...
. . .

...
...

. . .
...

1 y2
n−1 · · · y2

n−ℓ ν̃n−1 · · · ν̃n−q

 ≡

X1
X2
...

Xn

 .
The least squares estimator ϕ̂ = (α̂0, ̂(α1 + β1), . . . , ̂(αℓ + βℓ),−β̂1, . . . ,−β̂q)′ is given by

ϕ̂ =
(
X′X

)−1 X′Z.

Calculate α̂i = (α̂i + βi) − β̂i, for i = 1, . . . , p.

Step 2. Compute the residuals ϵ̂t: for t = 1, . . . , n,

ϵ̂t =
yt

σ̂t
,

where σ̂2
t = α̂0+

∑p
i=1 α̂iy2

t−i+
∑q

j=1 β̂ jσ̂
2
t− j with σ̂2

0 = α̂0/(1− α̂1− β̂1). Let F̂ϵ be the empirical
distribution function of the centered and rescaled residuals.

Step 3. Compute the residuals ξ̂t: ξ̂t = zt − Xtϕ̂ for t = 1, . . . , n. Let

Yt =
(
Xt, ξ̂t

)
=

(
1, y2

t−1, . . . , y
2
t−ℓ, ν̃t−1, . . . , ν̃t−q, ξ̂t

)
.

Apply the stationary bootstrap method to {Y1, . . . ,Yn}, and obtain stationary bootstrap obser-
vations {Y∗1, . . . ,Y∗n} with Y∗t = (X∗t , ξ̂∗t ) = (1, y2∗

t−1, . . . , y
2∗
t−ℓ, ν̃

∗
t−1, . . . , ν̃

∗
t−q, ξ̂

∗
t ).

Step 4. Calculate ϕ̂∗ = (α̂∗0, ̂(α1 + β1)∗, . . . , ̂(αℓ + βℓ)∗, β̂∗1, . . . , β̂
∗
q)′, the stationary bootstrap estimators

of the ARMA coefficients with the stationary bootstrap observations in Step 3 as follows:

ϕ̂∗ = (X∗′X∗)−1X∗′Z∗,

where X∗ = (X∗1
′,X∗2

′, . . . ,X∗n
′)′ is the n × (1 + ℓ + q) matrix with the stationary bootstrap

observations, and Z∗ = X∗ϕ̂ + ξ̂∗ with ξ̂∗ = (ξ̂∗1, ξ̂
∗
2, . . . , ξ̂

∗
n)′ in Step 3.
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Also, calculate α̂∗i = ̂(αi + βi)∗ − β̂∗i for i = 1, . . . , p.

Step 5. Calculate the bootstrap sample of volatilities {σ̂2∗
t : t = 1, . . . , n} as follows:

σ̂2∗
t = α̂

∗
0 +

p∑
i=1

α̂∗i y2∗
t−i +

q∑
j=1

β̂∗jσ̂
2∗
t− j

with σ̂2∗
0 = α̂0/(1 − α̂1 − β̂1),

Step 6. Obtain the bootstrap future values of volatilities {σ̂2∗
n+k : k = 1, 2, . . .} and of returns {Y∗n+k :

k = 1, 2, . . .} through the following recursions:

σ̂2∗
n+k = α̂

∗
0 +

p∑
i=1

α̂∗i Y2∗
n+k−i +

q∑
j=1

β̂∗jσ̂
2∗
n+k− j,

Y∗n+k = σ̂
∗
n+kϵ

∗
n+k,

where Y∗n+h = yn+h for h ≤ 0 and ϵ∗n+k is a i.i.d. random draw from F̂ϵ in Step 2.

Step 7. Repeat Steps 3–6 above B times where B is the number of bootstrap replicates, and thus we
obtain bootstrap replicates of returns and volatilities, {y∗(1)

n+k , . . . , y
∗(B)
n+k } and {σ̂2∗ (1)

n+k , . . . , σ̂2∗ (B)
n+k }

for each k.

Step 8. Let Q∗Y,B = G∗−1
Y,B and Q∗

σ2,B = G∗−1
σ2,B where

G∗Y,B(h) =
#
(
y∗(b)

n+k ≤ h
)

B
and G∗

σ2,B(h) =
#
(
σ̂2∗ (b)

n+k ≤ h
)

B

for b = 1, . . . , B. A 100(1 − α)% bootstrap prediction interval for Yn+k is given by[
L∗Y,B, U∗Y,B

]
=

[
Q∗Y,B

(
α

2

)
, Q∗Y,B

(
1 − α

2

)]
and the 100(1 − α)% bootstrap prediction interval for σ2

n+k is given by[
L∗
σ2,B, U∗

σ2,B

]
=

[
Q∗
σ2,B

(
α

2

)
, Q∗

σ2,B

(
1 − α

2

)]
.

3. Asymptotic Results

Now we establish the consistency of the stationary bootstrap estimators, and the convergence in dis-
tribution of the bootstrap future values as well as the large sample validity of the bootstrap prediction
intervals. Proofs are also given.

In the following, for random variables Xn and X, we write Xn
p
−→ X if Xn converges in probability

to X, Xn
p∗
−→ X if Xn converges to X in conditional probability given the sample y = {yt−n−ℓ, . . . , yt},

Xn
d−→ X if Xn converges in distribution to X, and Xn

d∗−→ X if Xn converges in distribution to X in
conditional probability, given the sample y = {yt−n−ℓ, . . . , yt}.
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Theorem 1. Let y = {yt−n−ℓ, . . . , yt} be a realization of the GARCH(p, q) process in (2.1) and (2.2).
The condition (2.4) in Step 1 is assumed. If ρ→ 0 and nρ→ ∞ as n→ ∞, then we have, as n→ ∞

(a)

sup
x

∣∣∣∣P∗ (√n
[
ϕ̂∗ − ϕ̂

]
≤ x

)
− P

(√
n
[
ϕ̂ − ϕ

]
≤ x

)∣∣∣∣ p
−→ 0,

and thus

ϕ̂∗
p∗
−→ ϕ, and

(
α̂∗0, α̂

∗
1, . . . , α̂

∗
p, β̂
∗
1, . . . , β̂

∗
q

)′ p∗
−→

(
α0, α1, . . . , αp, β1, . . . , βq

)′
, (3.1)

(b) as n→ ∞,

Y∗t+k
d∗−→ Yt+k and σ̂2∗

t+k
d∗−→ σ2

t+k,

(c)

lim
n→∞

lim
B→∞

P
[
L∗Y,B ≤ Yt+k ≤ U∗L,B

]
= 1 − α,

and

lim
n→∞

lim
B→∞

P
[
L∗
σ2,B ≤ σ

2
t+k ≤ U∗

σ2,B

]
= 1 − α.

Proof: (a) First, we recall the asymptotic normality of the least squares estimates of ARMA models.
The least squares estimator ϕ̂ satisfies

√
n
[
ϕ̂ − ϕ

]
=

(
X′X

n

)−1 (
1
√

n

)
X′ξ

d−→ N(0,Vϕ),

where Vϕ is the covariance matrix, which is given by Vϕ = Q−1ΓQ−1 where Q and Γ are such that(
X′X

n

)−1
p
−→ Q−1(

1
√

n

)
X′ξ

d−→ N(0,Γ). (3.2)

Note that Γ involves with the covariance matrix of the moving-average process, which is not a diagonal
matrix. In order to show that

√
n[ϕ̂∗ − ϕ̂] has the same limiting distribution, we observe that

√
n
[
ϕ̂∗ − ϕ̂

]
=

(
X∗′X∗

n

)−1 (
1
√

n

)
X∗′ξ̂∗

and we will first show that X∗′X∗/n and X′X/n have the same limiting in probability, and secondly
show that X∗′ξ̂∗/

√
n and X′ξ/

√
n have the same limiting distribution.
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We write

X′X =
(
X′1,X

′
2, . . .X

′
n
)

X1
X2
...

Xn

 =
n∑

i=1

Xi
′Xi

and similarly X∗′X∗ =
∑n

i=1 X∗i
′X∗i .

First, we show that
∑n

i=1 X∗i
′X∗i /n and

∑n
i=1 X′iXi/n have the same limiting in probability.

Let Ui,r be the sum of X′n jXn j in block B(i, r), where Xn j is such that Yn j = (Xn j, ξ̂n j), observations
in block B(i, r) = {Yn j : i ≤ j ≤ i + r − 1}, i.e., Ui,r =

∑i+r−1
j=i X′n jXn j. Let sτ = L1 + L2 + · · · + Lτ and

use ∣∣∣∣∣∣∣1n
n∑

i=1

X∗i
′X∗i −

1
n

n∑
i=1

X′iXi

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣1n

n∑
i=1

X∗i
′X∗i −

1
n

sτ∑
i=1

X∗i
′X∗i

∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣1n

sτ∑
i=1

X∗i
′X∗i −

1
n

n∑
i=1

X′iXi

∣∣∣∣∣∣∣ . (3.3)

We show that the first term of the right-hand side of (3.3) tends to 0 in (conditional) probability;

1
n

sτ∑
i=n+1

X∗i
′X∗i

p∗
−→ 0.

Recalling the definition of τ, and letting sτ−1 = L1 + · · · + Lτ−1, R1 = n − sτ−1 and R = Lτ − R1, we
have that

∑sτ
i=n+1 X∗i

′X∗i is the sum of observations in B(Iτ, Lτ), after deleting the first R1(= n− sτ−1) of
them. Note that R, conditional on (R1, sτ−1), has a geometric distribution with mean 1/ρ. This follows
from the memoryless property of the geometric distribution. Hence, (1/n)

∑sτ
i=n+1 X∗i

′X∗i is equal in
distribution to (1/n)UI,R, where I is uniform on {1, . . . , n}. It is enough to show that the (conditional)
mean and variance of (1/n)UI,R tends to 0.

We have

E∗[UI,R|R] =
n∑

i=1

1
n

i+R−1∑
j=i

X′n jXn j

 = R

1
n

n∑
i=1

X′iXi


and thus

1
n

E∗[UI,R] =
1
n

E∗
[
E∗[UI,R|R]

]
=

1
nρ

1
n

n∑
i=1

X′iXi

 = Op

(
1

nρ

)
p
−→ 0 (3.4)

by (3.2) and since nρ→ ∞. Also we have

1
n2 Var∗[UI,R] =

1
n2 E∗

[
Var∗(UI,R|R)

]
+

1
n2 Var∗

[
E∗(UI,R|R)

]
.

Its second term (1/n2)Var∗[E∗(UI,R|R)] is equal to

1
n2 Var∗

R 1
n

n∑
i=1

X′iXi

 = 1 − ρ
n2ρ2

1
n

n∑
i=1

X′iXi

 1
n

n∑
i=1

X′iXi

′ = Op

(
1

n2ρ2

)
p
−→ 0. (3.5)
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For the first term (1/n2)E∗[Var∗(UI,R|R)], consider Var∗(UI,R|R) = E∗[UI,RU′I,R|R] =

n∑
i=1

1
n

i+R−1∑
j=i

X′n jXn j


i+R−1∑

j=i

X′n jXn j


′

=
R
n

 n∑
i=1

X′iXi

  n∑
i=1

X′iXi

′
and then

1
n2 E∗

[
Var∗(UI,R|R)

]
=

1
n3ρ

 n∑
i=1

X′iXi

  n∑
i=1

X′iXi

′ = Op

(
1

nρ

)
p
−→ 0. (3.6)

Thus the (conditional) variance of (1/n)UI,R tends to 0, and the first term of the right-hand side of
(3.3) tends to 0 in (conditional) probability.

Now we show that the second term of the right-hand side of (3.3) tends to 0 in (conditional)
probability; ∣∣∣∣∣∣∣1n

sτ∑
i=1

X∗i
′X∗i −

1
n

n∑
i=1

X′iXi

∣∣∣∣∣∣∣ p∗
−→ 0.

Recalling the definition of Ui,r =
∑i+r−1

j=i X′n jXn j, we have

1
n

sτ∑
i=1

X∗i
′X∗i =

1
n

τ∑
i=1

UIi,Li .

Just as in Politis and Romano (1994) and Hwang and Shin (2012b), since τ = nρ + Op(
√

nρ), we
consider a sequence m = mn with m/(nρ)→ 1, and it suffices to show that∣∣∣∣∣∣∣1n

m∑
i=1

UIi,Li −
1
n

n∑
i=1

X′iXi

∣∣∣∣∣∣∣ p∗
−→ 0.

The left-hand side is less than or equal to∣∣∣∣∣∣∣1n
m∑

i=1

UIi,Li −
ρ

m

m∑
i=1

UIi,Li

∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣ ρm

m∑
i=1

UIi,Li − ρE∗[UI1,L1 ]

∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣ρE∗[UI1,L1 ] − 1

n

n∑
i=1

X′iXi

∣∣∣∣∣∣∣ . (3.7)

The first term of (3.7) is less than or equal to∣∣∣∣∣∣∣
m∑

i=1

UIi,Li

∣∣∣∣∣∣∣
∣∣∣∣∣1n − ρ

m

∣∣∣∣∣ =
∣∣∣∣∣∣∣ 1
nm

m∑
i=1

UIi,Li

∣∣∣∣∣∣∣ |m − nρ| = op

(
1

nρ

)
p∗
−→ 0,

where the last equality holds by (3.4). The second term of (3.7),

ρ

∣∣∣∣∣∣∣ 1
m

m∑
i=1

UIi,Li − E∗[UI1,L1 ]

∣∣∣∣∣∣∣ = op (ρ)
p∗
−→ 0,

where the last equality holds by the weak law of large numbers of i.i.d. sequence {UIi,Li : i = 1, 2, . . . }
as m→ ∞. For the third term of (3.7), we calculate E∗[UI1,L1 ]. Similarly to above, we have

E∗[UI1,L1 ] = E∗
[
E∗(UI1,L1 |L1)

]
= E∗

L1

1
n

n∑
i=1

X′iXi

 = 1
ρ

1
n

n∑
i=1

X′iXi

 .



50 Eunju Hwang, Dong Wan Shin

Thus the third term of (3.7) is zero. Therefore,
∑n

i=1 X∗i
′X∗i /n and

∑n
i=1 X′iXi/n have the same limiting

in probability.

Secondly, we show that (1/
√

n)X∗′ξ̂∗
d∗−→ N(0,Γ). We write

X∗′ξ̂∗ =
(
X∗1
′,X∗2

′, . . .X∗n
′) (ξ̂∗1, ξ̂∗2, · · · , ξ̂∗n)′ = n∑

i=1

X∗i
′ξ̂∗i , X′ξ =

n∑
i=1

X′iξi,

and

1
√

n

n∑
i=1

X∗i
′ξ̂∗i =

1
√

n

sτ∑
i=1

X∗i
′ξ̂∗i −

1
√

n

sτ∑
i=n+1

X∗i
′ξ̂∗i .

Let Vi,r =
∑i+r−1

j=i X′n jξ̂n j, which is related to the observations in block B(i, r). By the same argu-
ments as above, (1/

√
n)

∑sτ
i=n+1 X∗i

′ξ̂∗i is equal in distribution to (1/
√

n)VI,R, and, instead of (3.4), (3.5)
and (3.6), respectively, we have

1
√

n
E∗[VI,R] =

1
√

n
E∗[E∗[VI,R|R]] =

1
nρ

 1
√

n

n∑
i=1

X′i ξ̂i

 = Op

(
1

nρ

)
p
−→ 0

1
n

Var∗[E∗(VI,R|R)] =
1
n

Var∗
R 1

n

n∑
i=1

X′i ξ̂i

 = 1 − ρ
n2ρ2

 1
√

n

n∑
i=1

X′i ξ̂i

  1
√

n

n∑
i=1

X′i ξ̂i

′ (3.8)

which is equal to Op(1/(n2ρ2))
p
−→ 0, and

1
n

E∗[Var∗(VI,R|R)] =
1

nρ

 1
√

n

n∑
i=1

X′i ξ̂i

  1
√

n

n∑
i=1

X′i ξ̂i

′ = Op

(
1

nρ

)
p
−→ 0,

and thus we have

1
√

n

sτ∑
i=n+1

X∗i
′ξ̂∗i

p∗
−→ 0.

Recalling the definition of Vi,r =
∑i+r−1

j=i X′n jξ̂n j, we have

1
√

n

sτ∑
i=1

X∗i
′ξ̂∗i =

1
√

n

τ∑
i=1

VIi,Li .

Similarly to above, for a sequence m = mn with m/(nρ)→ 1, it suffices to show that

1
√

n

m∑
i=1

VIi,Li

d∗−→ N(0,Γ).

The left-hand side is equal to 1
√

n

m∑
i=1

VIi,Li −
√
ρ

m

m∑
i=1

VIi,Li

 + √ ρ

m

m∑
i=1

VIi,Li −
√

mρE∗[VI1,L1 ]

 + √mρE∗[VI1,L1 ]. (3.9)



Stationary Bootstrap Prediction Intervals for GARCH(p, q) 51

The first term of (3.9) is less than or equal to∣∣∣∣∣∣∣
m∑

i=1

VIi,Li

∣∣∣∣∣∣∣
∣∣∣∣∣∣ 1
√

n
−

√
ρ

m

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣ 1
m

m∑
i=1

VIi,Li

∣∣∣∣∣∣∣ ∣∣∣√m − √nρ
∣∣∣ √m

n
= op

(
1
√

m

)
p∗
−→ 0,

where the last equality holds by (3.8); E∗VI1,L1 = Op(1/
√

nρ). The second term of (3.9),

√
mρ

 1
m

m∑
i=1

VIi,Li − E∗[VI1,L1 ]

 = Op
(√
ρ
) p∗
−→ 0,

since
√

m((1/m)
∑m

i=1 VIi,Li − E∗[VI1,L1 ]) = Op(1) for i.i.d. sequence {VIi,Li : i = 1, 2, . . .}.
For the third term of (3.9), we have

E∗[VI1,L1 ] = E∗[E∗(VI1,L1 |L1)] = E∗
L1

1
n

n∑
i=1

X′i ξ̂i

 = 1
ρ

1
n

n∑
i=1

X′i ξ̂i

 .
Thus the third term of (3.9) is equal to

√
mρ

nρ

n∑
i=1

X′i ξ̂i =

 1
√

n

n∑
i=1

X′i ξ̂i

 + op(1) =

 1
√

n

n∑
i=1

X′iξi

 + op(1)
d−→ N(0,Γ).

Slutsky’s theorem allows the desired asymptotic normality of (1/
√

n)
∑n

i=1 X∗i
′ξ̂∗i in (conditional) prob-

ability to hold and thus the proof of (a) is completed.
(b)(c) The proof of Theorem 1(b) is given by induction and by (3.1). The same arguments as in

the proof of Theorem 3.1 of Thombs and Schucany (1990) are applied along with the convergence of
ϕ̂∗ in conditional probability to ϕ in (3.1), and thus the detailed proof is omitted here. The proof of
Theorem 1(c) is also given by the same argument as in Thombs and Schucany (1990). �

4. Concluding Remarks

This paper provides a mathematical justification for a new bootstrapping method, stationary bootstrap-
ping, for constructing prediction intervals for GARCH models. All existing bootstrapping methods in
the literature have no mathematical justifications; therefore, our mathematical results provide a theo-
retical contribution. It would be a salient topic for future research to make a finite sample comparison
of the proposed method with other existing methods. Since the proposed method should be sensitive
to the block length parameter, a detailed large sample and finite sample investigation of this issue
represents an important future topic.
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