Journal of the Korean Data & Information Science Society 2011, **22**(2), 353–360

On geometric ergodicity and β - mixing property of asymmetric power transformed threshold GARCH(1,1) process[†]

Oesook Lee¹

¹Department of Statistics, Ewha Womans University Received 28 January 2011, revised 09 March 2011, accepted 14 March 2011

Abstract

We consider an asymmetric power transformed threshold GARCH(1.1) process and find sufficient conditions for the existence of a strictly stationary solution, geometric ergodicity and β -mixing property. Moments conditions are given. Box-Cox transformed threshold GARCH(1.1) process is also considered as a special case.

Keywords: Asymmetric power transformed threshold GARCH, β -mixing, geometric ergodicity, Markov chain, stationarity.

1. Introduction

Since the introduction by Engle (1982) of autoregressive conditional heteroscedastic (ARCH) models and their generalization by Bollerslev (1986), numerous GARCH-type models have been developed and successfully applied in various fields. Classical GARCH(1,1) process $\{\varepsilon_t\}$ is defined as

$$\varepsilon_t = \sqrt{h_t} e_t, \quad h_t - \beta h_{t-1} = \alpha_0 + \alpha_1 \varepsilon_{t-1}^2, \tag{1.1}$$

where $\beta > 0, \alpha_0 > 0, \alpha_1 \ge 0$, and $\{e_t\}$ is a sequence of independent and identically distributed random variables with zero mean. e_t is independent of $\varepsilon_{t-1}, \varepsilon_{t-2}, \cdots$.

Classical GARCH process fails to explain the asymmetric phenomena, since in the model, the conditional variance is a function of only the magnitudes of the lagged residual but not their signs. Threshold GARCH model is a model that accounts for the asymmetric effects.

Li and Li (1996) introduce a class of threshold ARCH process where the asymmetry in conditional variances is represented via threshold:

$$h_t = \alpha_0 + \alpha_{11}(\varepsilon_{t-1}^{+2}) + \alpha_{12}(\varepsilon_{t-1}^{-2}),$$

[†] This research was supported by the Korean Research Foundation grant funded by the Korean Government (KRF 2008-314-C00049).

¹ Professor, Department of Statistics, Ewha Womans University, Seoul 120-750, Korea. E-mail:oslee@ewha.ac.kr

where $\varepsilon_t^+ = max(0, \varepsilon_t), \ \varepsilon_t^- = max(0, -\varepsilon_t), \ \varepsilon_t^{+2} = (\varepsilon_t^+)^2$, and $\varepsilon_t^{-2} = (\varepsilon_t^-)^2$.

As a nonlinear asymmetric model, power transformed threshold models are suggested and studied by many authors (Ding *et al.*, 1993; Ling and McAleer, 2002; Hwang and Basawa, 2004; Liu, 2006; Lee, 2006, 2007a, 2007b).

He and Terasvirta (1999) suggest the general GARCH(1,1) model:

$$\varepsilon_t = h_t e_t, h_t^{\gamma} = g(e_{t-1}) + c(e_{t-1})h_{t-1}^{\gamma}.$$
(1.2)

Ling and McAleer (2002) show the existence of moments and a unique $\alpha\gamma$ -order stationary solution of (1.2), i.e., there exists a unique strictly stationary solution h_t of (1.2) with $Eh_t^{\alpha\gamma} < \infty$ under some moments conditions on e_t .

Hwang and Basawa (2004) propose a Box-Cox transformed threshold GARCH(1,1) model for the time series $\{\varepsilon_t\}$ which is defined by

$$\varepsilon_t = \sqrt{h_t} e_t, \quad h_t^{\gamma} - \beta h_{t-1}^{\gamma} = \alpha_0 + \alpha_{11} (\varepsilon_{t-1}^{+2})^{\gamma} + \alpha_{12} (\varepsilon_{t-1}^{-2})^{\gamma}, \tag{1.3}$$

where $\gamma > 0$, $\beta \ge 0$, $\alpha_0 > 0$, $\alpha_{11} \ge 0$, $\alpha_{12} \ge 0$. They show that if $\beta + \alpha_{11}E[(e_t^{+2})^{\gamma}] + \alpha_{12}E[(e_t^{-2})^{\gamma}] < 1$, then the process h_t^{γ} has a unique strictly stationary solution $h_t^{\gamma*} = \alpha_0 + \alpha_0 \sum_{k=1}^{\infty} \prod_{i=1}^k (\beta + \alpha_{11}(e_{t-i}^{+2})^{\gamma} + \alpha_{12}(e_{t-i}^{-2})^{\gamma})$ whose infinite sum is finite almost surely. Lee (2007c) show the geometric ergodicity of the process of (1.3) under some additional assumption on e_t . Liu (2006) and Meitz (2006) prove that the process has a unique strictly stationary ergodic solution if and only if $E[\ln(\beta + \alpha_{11}(e_t^{+2})^{\gamma} + \alpha_{12}(e_t^{-2})^{\gamma})] < 0$. Moments conditions and tail behavior are also considered.

Kim and Hwang (2005) examine a class of models possessing threshold asymmetric conditional variance to which distinct power transformation parameters are applied according to the sign of e_t . The model is given by

$$h_t^{\gamma_1} = \alpha_0 + \alpha_{11} (\varepsilon_{t-1}^2)^{\gamma_1}, \text{ if } \varepsilon_{t-1} \ge 0$$
 (1.4)

$$h_t^{\gamma_2} = \alpha_0 + \alpha_{12} (\varepsilon_{t-1}^2)^{\gamma_2}, \quad \text{if} \quad \varepsilon_{t-1} < 0$$
 (1.5)

where $\alpha_0 > 0$, $\alpha_{11}, \alpha_{12} \ge 0$, $\gamma_1, \gamma_2 > 0$. Parameter estimations and comparative data analysis are studied and it is observed that for certain data, (1.4)-(1.5) is better than some other traditional models.

In this paper, we consider the asymmetric power transformed threshold GARCH(1,1) process defined by;

$$\varepsilon_t = \sqrt{h_t e_t},\tag{1.6}$$

$$h_t^{\gamma_1} - \beta h_{t-1}^{\gamma_1} = \alpha_0 + \alpha_{11} (\varepsilon_{t-1}^2)^{\gamma_1}, \text{ if } \varepsilon_{t-1} \ge 0$$
 (1.7)

$$h_t^{\gamma_2} - \beta h_{t-1}^{\gamma_2} = \alpha_0 + \alpha_{12} (\varepsilon_{t-1}^2)^{\gamma_2}, \quad \text{if} \quad \varepsilon_{t-1} < 0$$
 (1.8)

where $\alpha_0 > 0$, $\alpha_{11}, \alpha_{12}, \beta \ge 0$, $\gamma_1, \gamma_2 > 0$.

We aim to find sufficient conditions under which the given process is strictly stationary, geometrically ergodic and beta-mixing with exponential decay. Existence of moments is also examined.

We let $\{X_t : t \ge 0\}$ be a temporarily homogeneous Markov chain taking values in (E, \mathcal{E}) , where E is a set and \mathcal{E} is a countably generated σ -algebra of subsets of E, with transition

354

probabilities given by $p^{(t)}(x, A) = P(X_t \in A | X_0 = x), x \in E, A \in \mathcal{E}$. In this paper $E = R^+$ and \mathcal{E} is the σ -algebra of Borel sets.

The Markov chain $\{X_t\}$ is ϕ -irreducible if, for some σ -finite measure ϕ on (E, \mathcal{E}) , $\sum_t p^{(t)}(x, A) > 0$ for all $x \in E$, whenever $\phi(A) > 0$. A set $B \in \mathcal{E}$ is said to be small (with respect to ϕ) if $\phi(B) > 0$ and for every $A \in \mathcal{E}$ with $\phi(A) > 0$, there exists $j \ge 1$ such that $\inf_{x \in B} \sum_{t=1}^{j} p^{(t)}(x, A) > 0$.

 $\{X_t\}$ is ergodic if there exists a probability measure π on (E, \mathcal{E}) such that $\lim_{t\to\infty} \|p^{(t)}(x, \cdot) - \pi(\cdot)\| = 0$ for all $x \in E$, where $\|\cdot\|$ denotes the total variation norm. If $\{X_t\}$ is ergodic and there exists a ρ , $0 < \rho < 1$ such that $\lim_{t\to\infty} \rho^{-t} \|p^{(t)}(x, \cdot) - \pi(\cdot)\| = 0$ for all $x \in E$, then $\{X_t\}$ is said to be geometrically ergodic.

If $\{X_t\}$ is a Markov process with initial distribution as its invariant measure $\pi(dx)$, then $\{X_t\}$ is stationary β -mixing with exponential decay if there exist $0 < \rho < 1$ and c > 0 such that $\int \|p^{(t)}(x, \cdot) - \pi(\cdot)\| \pi(dx) \le c\rho^t, \quad \forall t \in N.$

To obtain our main result, we owe the following theorem to Tweedie (1983a, 1983b).

Theorem 1.1 Suppose that $\{X_t\}$ is a ϕ -irreducible aperiodic Markov chain with one-step transition probability function p(x, dy). If there exist, for some small set A, a nonnegative measurable function g, ρ , $0 < \rho < 1$ and $\varepsilon > 0$ satisfying

$$\int p(x,dy)g(y) \le \rho g(x) - \varepsilon, x \in A^c,$$
(1.9)

and

$$\sup_{x \in A} \int p(x, dy) g(y) < \infty, \tag{1.10}$$

then $\{X_t\}$ is geometric ergodic. If $\{X_t\}$ is initialized from an invariant initial distribution, say π , it is strictly stationary and β -mixing with exponential decay. Moreover, $E_{\pi}g(X_1) < \infty$.

Readers are referred to Meyn and Tweedie (1993) for additional definitions and properties in Markov chain context.

2. Main results

 $\{h_t\}$ given in (1.6)-(1.8) can be rewritten as

$$h_{t} = (\alpha_{0} + (\alpha_{11}e_{t-1}^{2\gamma_{1}} + \beta)h_{t-1}^{\gamma_{1}})^{1/\gamma_{1}}I_{1t-1} + (\alpha_{0} + (\alpha_{12}e_{t-1}^{2\gamma_{2}} + \beta)h_{t-1}^{\gamma_{2}})^{1/\gamma_{2}}I_{2t-1},$$
(2.1)

where $I_{1t} = I(e_t \ge 0)$, $I_{2t} = 1 - I_{1t}$, and I(A) is the indicator function of A.

 ${h_t}$ given by (2.1) is a Markov chain with *t*-step transition probability function $p^{(t)}(x, A) = P(h_t \in A | h_0 = x)$ and $p^{(1)}(x, A) = p(x, A)$.

Throughout this paper, we assume that e_t has an absolutely continuous distribution whose probability density function is positive everywhere on R and $E|e_t|^2 < \infty$. For simplicity of notations, let $p = P(e_t \ge 0)$, $q = P(e_t < 0)$, $e_t^{+2\gamma} = (e_t^+)^{2\gamma}$, $e_t^{-2\gamma} = (e_t^-)^{2\gamma}$.

Lemma 2.1 { h_t } generated by (2.1) is μ -irreducible with some σ -finite measure μ on R^+ if one of the following conditions holds:

(c1) $\gamma_1 > 1$, $\gamma_2 > 1$, and $\beta^{1/\gamma_1} p + \beta^{1/\gamma_2} q + \alpha_{11}^{1/\gamma_1} E(e_t^{+2}) + \alpha_{12}^{1/\gamma_2} E(e_t^{-2}) < 1;$ (c2) $\gamma_1 > 1, \ 0 < \gamma_2 \le 1, \ \text{and}$ $\beta q + \beta^{\gamma_2/\gamma_1} p + \alpha_{11}^{\gamma_2/\gamma_1} E(e_t^{+2\gamma_2}) + \alpha_{12} E(e_t^{-2\gamma_2}) < 1;$ (c3) $0 < \gamma_1 \le 1, \ \gamma_2 > 1, \ \text{and}$ $\begin{array}{l} (c4) \ 0 < \gamma_1 \leq 1, \ \gamma_2 > 1, \text{ and} \\ \beta p + \beta^{\gamma_1/\gamma_2} q + \alpha_{11} E(e_t^{+2\gamma_1}) + \alpha_{12}^{\gamma_1/\gamma_2} E(e_t^{-2\gamma_1}) < 1; \\ (c4) \ 0 < \gamma_1 \leq 1, \ 0 < \gamma_2 \leq 1, \text{ and} \\ \beta^{\gamma_1} q + \beta^{\gamma_2} p + \alpha_{11}^{\gamma_2} E(e_t^{+2\gamma_1\gamma_2}) + \alpha_{12}^{\gamma_1} E(e_t^{-2\gamma_1\gamma_2}) < 1. \end{array}$

Lemma 2.2 Consider a Markov chain $\{h_t\}$ given by (2.1). If one of (c1)-(c4) holds, $\{h_t\}$ is aperiodic and [c, d] with $0 \le c < d < \infty$ and $\mu([c, d]) > 0$ is a small set. Here μ is a σ -finite measure defined in the proof of lemma 2.1.

We make the following assumptions:

- (d1) $E(e_t^{2m}) < \infty, \gamma_1 > 1, \gamma_2 > 1$, and

- $\begin{array}{l} (\mathrm{d1}) \ E(e_t^{2m}) < \infty, \ \gamma_1 > 1, \ \gamma_2 > 1, \ \mathrm{and} \\ E(\beta^{1/\gamma_1}I_{1t} + \beta^{1/\gamma_2}I_{2t} + \alpha_{11}^{1/\gamma_1}e_t^{+2} + \alpha_{12}^{1/\gamma_2}e_t^{-2})^m < 1; \\ (\mathrm{d2}) \ E(e_t^{2\gamma_2m}) < \infty, \ \gamma_1 > 1, \ 0 < \gamma_2 \leq 1, \ \mathrm{and} \\ E(\beta I_{2t} + \beta^{\gamma_2/\gamma_1}I_{1t} + \alpha_{11}^{\gamma_2/\gamma_1}e_t^{+2\gamma_2} + \alpha_{12}e_t^{-2\gamma_2})^m < 1; \\ (\mathrm{d3}) \ E(e_t^{2\gamma_1m}) < \infty, \ 0 < \gamma_1 \leq 1, \ \gamma_2 > 1, \ \mathrm{and} \\ E(\beta I_{1t} + \beta^{\gamma_1/\gamma_2}I_{2t} + \alpha_{11}e_t^{+2\gamma_1} + \alpha_{12}^{\gamma_1/\gamma_2}e_t^{-2\gamma_1})^m < 1; \\ (\mathrm{d4}) \ E(e_t^{2\gamma_1\gamma_2m}) < \infty, \ 0 < \gamma_1 \leq 1, \ 0 < \gamma_2 \leq 1, \ \mathrm{and} \\ E(\beta^{\gamma_1}I_{2t} + \beta^{\gamma_2}I_{1t} + \alpha_{11}^{\gamma_2}e_t^{+2\gamma_1\gamma_2} + \alpha_{12}^{\gamma_1}e_t^{-2\gamma_1\gamma_2})^m < 1. \end{array}$

Theorem 2.1 If one of the conditions (d1)-(d4) holds for some integer $m \ge 1$, then $\{h_t\}$ given by (1.6)-(1.8) is geometrically ergodic and $\{h_t\}$ initialized from invariant probability π is strictly stationary and β -mixing with exponential decay. If one of (d1)-(d4) holds for some integer $m \geq 1$, then $E(h_t^m) < \infty, E(h_t^{\gamma_1 m}) < \infty, E(h_t^{\gamma_2 m}) < \infty$ or $E(h_t^{\gamma_1 \gamma_2 m}) < \infty$, respectively.

Corollary 2.1 If $\gamma_1 = \gamma_2 = \gamma > 0$, (2.1) reduces to the Box-Cox transformed threshold GARCH(1,1) process (1.3) and if one of the following (2.2) and (2.3) holds for some positive integer m > 1

$$\gamma \ge 1, \quad E(\beta^{1/\gamma} + \alpha_{11}^{1/\gamma} e_t^{+2} + \alpha_{12}^{1/\gamma} e_t^{-2})^m < 1, \tag{2.2}$$

$$0 < \gamma < 1, \quad E(\beta^{\gamma} + \alpha_{11}^{\gamma} e_t^{+2\gamma} + \alpha_{12}^{\gamma} e_t^{-2\gamma})^m < 1, \tag{2.3}$$

then the conclusion of theorem 2.1 holds.

Remark 2.1 Consider the Box-Cox transformed threshold GARCH(1.1) process given by (1.3). It is proved that if

$$\beta + \alpha_{11} E(e_t^{+2\gamma}) + \alpha_{12} E(e_t^{-2\gamma}) < 1,$$
(2.4)

then $\{h_t^{\gamma}\}$ is geometric ergodic and β -mixing process. Proof can be found in Lee (2007c).

Remark 2.2 Note that (2.4) or one of (2.2) and (2.3) with m = 1 is not superior to each other.

356

3. Proofs

Proof of Lemma 2.1 : Recall that $(a+b)^{\gamma} \leq a^{\gamma} + b^{\gamma}$ if a > 0, b > 0 and $0 \leq \gamma \leq 1$. (c1) Suppose that $\gamma_1 > 1$ and $\gamma_2 > 1$. We may assume without loss of generality that $\alpha_{11} > 0.$

For any $x \in \mathbb{R}^+$,

$$p(x, A) = P(h_t \in A | h_{t-1} = x)$$

$$= P(e_{t-1} \ge 0) P((\alpha_0 + (\alpha_{11}e_{t-1}^{+2\gamma_1} + \beta)x^{\gamma_1})^{1/\gamma_1} \in A)$$

$$+ P(e_{t-1} < 0) P((\alpha_0 + (\alpha_{12}e_{t-1}^{-2\gamma_2} + \beta)x^{\gamma_2})^{1/\gamma_2} \in A).$$
(3.1)

Define $\mu(A) = \lambda(A^{\gamma_1} \cap [\alpha^* + (\alpha^*(1-r)^{-1} + 1)^{\gamma_1}, \infty))$ where λ is a Lebesgue measure on R^+ , $\alpha^* = \max\{\alpha_0, E(\alpha_{0t})\}, r = E(\beta_t + \eta_t) < 1, \alpha_{0t} = \alpha_0^{1/\gamma_1} I_{1t} + \alpha_0^{1/\gamma_2} I_{2t}, \beta_t = \beta^{1/\gamma_1} I_{1t} + \beta^{1/\gamma_2} I_{2t}, \eta_t = \alpha_{11}^{1/\gamma_1} e_t^{+2} + \alpha_{12}^{1/\gamma_2} e_t^{-2}.$ Let A be a Borel set with $\mu(A) > 0$ and let $a = \max\{\inf A^{\gamma_1}, \alpha^* + (\alpha^*(1-r)^{-1}+1)^{\gamma_1}\},$

where $A^{\gamma_1} = \{x^{\gamma_1} | x \in A\}$ and $\inf A^{\gamma_1} = \inf\{x^{\gamma_1} | x \in A\}$.

For any x with $0 < x^{\gamma_1} < a - \alpha_0$, the fact $x^{-\gamma_1}(a - \alpha_0) - \beta > 0$ yields that $\lambda(B) > 0$ where $B = x^{-\gamma_1} (A^{\gamma_1} - \alpha_0) - \beta$. Hence we have that

$$p(x, A) \ge P(e_{t-1} \ge 0)P((\alpha_0 + (\alpha_{11}e_{t-1}^{+2\gamma_1} + \beta)x^{\gamma_1})^{1/\gamma_1} \in A)$$

= $p P(\alpha_{11}e_{t-1}^{+2\gamma_1} \in B)$
= $p \int_B q(y)dy$
> 0, (3.2)

where $q(\cdot)$ is a probability density function of $\alpha_{11}e_t^{+2\gamma_1}$ which is positive on R^+ . Note that the following inequality holds:

$$h_t \le \alpha_{0t-1} + \sum_{k=1}^{t-1} \prod_{i=1}^k (\beta_{t-i} + \eta_{t-i}) \alpha_{0,t-i-1} + \prod_{i=1}^t (\beta_{t-i} + \eta_{t-i}) h_0.$$
(3.3)

From (3.3), we have that for any $x \in \mathbb{R}^+$,

$$E[h_t|h_0 = x] \le E(\alpha_{0t})(1 + r + r^2 + \dots + r^{t-1}) + r^t x$$

$$\le \frac{E(\alpha_{0t})}{1 - r} + 1,$$
(3.4)

for sufficiently large t.

Since $a \ge \alpha^* + (\alpha^*(1-r)^{-1}+1)^{\gamma_1}$, for any x satisfying $x^{\gamma_1} \ge a - \alpha_0$, we have that

$$P(h_{t_0}^{\gamma_1} \le a - \alpha^* | h_0 = x) = P(h_{t_0} \le (a - \alpha^*)^{1/\gamma_1} | h_0 = x)$$

$$\ge P(h_{t_0} \le \alpha^* (1 - r)^{-1} + 1 | h_0 = x)$$

$$\ge P(h_{t_0} \le \frac{E(\alpha_{0t})}{1 - r} + 1 | h_0 = x)$$

$$> 0$$
(3.5)

for some $t_0 = t_0(x) \ge 1$. The last inequality in (3.5) is obtained from (3.4).

Oesook Lee

Let $\{h_t(x) : t \ge 0\}$ denote $\{h_t\}$ in (2.1) if $h_0 = x, x \in \mathbb{R}^+$.

Combining (3.2) and (3.5), we have that for any $x^{\gamma_1} \ge a - \alpha_0$,

$$p^{(t_0+1)}(x,A) = P(h_{t_0+1} \in A | h_0 = x) \geq P(h_{t_0}^{\gamma_1}(x) \le a - \alpha^*) P(h_{t_0+1}(x) \in A | h_{t_0}^{\gamma_1}(x) \le a - \alpha^*) > 0.$$
(3.6)

Thus, from (3.2) and (3.6), irreducibility of $\{h_t\}$ under the assumption (c1) is proved.

Suppose that (c2) holds. In this case, we define that $\mu(A) = \lambda (A^{\gamma_2} \cap [\alpha^* + \alpha^*(1-r)^{-1} + 1, \infty))$ where $\alpha^* = \max\{\alpha_0, E(\alpha_{0t})\}, r = E(\beta_t + \eta_t) < 1, \alpha_{0t} = \alpha_0^{\gamma_2/\gamma_1} I_{1t} + \alpha_0 I_{2t}, \beta_t = \beta^{\gamma_2/\gamma_1} I_{1t} + \beta I_{2t}, \eta_t = \alpha_{11}^{\gamma_2/\gamma_1} e_t^{+2\gamma_2} + \alpha_{12} e_t^{-2\gamma_2}$. Take $a = \max\{\inf A^{\gamma_2}, \alpha^* + \alpha^*(1-r)^{-1} + 1\}$.

For the case (c3), let $\mu(A) = \lambda(A^{\gamma_1} \cap [\alpha^* + \alpha^*(1 - r)^{-1} + 1, \infty))$ where $\alpha^* = \max\{\alpha_0, E(\alpha_{0t})\}, r = E(\beta_t + \eta_t) < 1, \alpha_{0t} = \alpha_0^{\gamma_1/\gamma_2} I_{1t} + \alpha_0 I_{2t}, \beta_t = \beta^{\gamma_1/\gamma_2} I_{1t} + \beta I_{2t}, \eta_t = \alpha_{11}^{\gamma_1/\gamma_2} e_t^{+2\gamma_1} + \alpha_{12} e_t^{-2\gamma_2}.$ Take $a = \max\{\inf A^{\gamma_1}, \alpha^* + \alpha^*(1 - r)^{-1} + 1\}.$

Under the assumption (c4), we define $\mu(A) = \lambda(A^{\gamma_1 \gamma_2} \cap [\alpha^* + \alpha^*(1-r)^{-1} + 1, \infty))$ where $\alpha^* = \max\{\alpha_0, E(\alpha_{0t})\}, r = E(\beta_t + \eta_t) < 1, \ \alpha_{0t} = \alpha_0^{\gamma_2} I_{1t} + \alpha_0^{\gamma_1} I_{2t}, \ \beta_t = \beta^{\gamma_2} I_{1t} + \beta^{\gamma_1} I_{2t}, \ \eta_t = \alpha_{11}^{\gamma_2} e_t^{+2\gamma_1 \gamma_2} + \alpha_{12}^{\gamma_1} e_t^{-2\gamma_1 \gamma_2}.$ Let $a = \max\{\inf A^{\gamma_1 \gamma_2}, \alpha^* + (\alpha^*(1-r)^{-1} + 1)\}.$

Since the remaining parts of the proof of (c_2) - (c_4) are basically the same as those of the case (c_1) , details are omitted.

Proof of Lemma 2.2: We first consider the case (c1). Suppose that A is a Borel set with $\mu(A) > 0$ and let $\mu([c, d]) > 0$.

Let $d^{\gamma_1} < a - \alpha_0$. If $x \in [c, d]$, then $x^{\gamma_1} < d^{\gamma_1} < a - \alpha_0$ and

$$\inf_{x \in [c,d]} p(x,A) \ge \int_{B(d)} g(y) > 0, \tag{3.7}$$

where $B(d) = d^{-\gamma_1}(A^{\gamma_1} - \alpha_0) - \beta$. Note that $B(y) \subset B(x)$ if x < y.

Now assume that $a - \alpha_0 < d^{\gamma_1}$. By virtue of (3.5), there exists $t_0 = t_0(d)$ such that $P(h_{t_0}^{\gamma_1} \leq a - \alpha^* | h_0 = d) > 0$ and hence using(3.3)-(3.5), we obtain that for any x < d, $P(h_{t_0}^{\gamma_1} \leq a - \alpha^* | h_0 = x) > 0$.

Therefore we have that for any x < d,

$$p^{(t_0+1)}(x,A) \ge P(h_{t_0}^{\gamma_1}(d) \le a - \alpha^*) P(h_{t_0+1}(x) \in A | h_{t_0}^{\gamma_1}(d) \le a - \alpha^*) > 0.$$
(3.8)

Consequently from (3.7) and (3.8), for any A with $\mu(A) > 0$, we may choose t_0 such that

$$\inf_{x \in [c,d]} \sum_{t=1}^{t_0+1} p^{(t)}(x,A) > 0.$$

which implies that [c, d] with $\mu([c, d]) > 0$ is a small set.

Moreover, if $t > t_0(d)$, then (3.5) holds for all $x \in [c, d]$, which implies that

$$P(h_t^{\gamma_1}(x) \in [c,d]) > 0 \text{ and } P(h_{t+1}^{\gamma_1}(x) \in [c,d]) > 0,$$
(3.9)

358

for every $x \in [c, d]$. Aperiodicity of $\{h_t\}$ follows from, together with (3.9), the fact that [c, d] is a small set.

Proof of Theorem 2.1: Recall that $[E(X)]^m \leq E(X^m), m \geq 1$.

(d1) Suppose that (d1) holds for some integer $m \ge 1$. Define a test function $g: \mathbb{R}^+ \to \mathbb{R}^+$ by $g(x) = x^m + 1$. Then

$$E[g(h_t)|h_{t-1} = x]$$

$$\leq 1 + E[(\alpha_{0t-1} + \xi_{t-1}x)^m]$$

$$= 1 + E(\xi_{t-1}^m x^m + \sum_{i=0}^{m-1} {m \choose i} (\xi_{t-1}^i \alpha_{0t-1}^{m-i}) x^i$$

$$\leq 1 + E(\xi_{t-1}^m) x^m + \sum_{i=0}^{m-1} {m \choose i} E[\xi_{t-1}^i \alpha_{0t-1}^{m-i}] (1+x)^{m-1}$$

$$= (1+x^m) (\frac{(E(\xi_{t-1}^m) - 1) x^m + K(1+x)^{m-1}}{1+x^m})$$

$$\leq \rho(1+x^m), \quad x \geq M$$
(3.10)

for some $\rho < 1$ and sufficiently large $M < \infty$, where $\alpha_{0t} = \alpha_0^{1/\gamma_1} I_{1t} + \alpha_0^{1/\gamma_2} I_{2t}$, $\xi_t = \beta_t^{1/\gamma_1} I_{1t} + \beta^{1/\gamma_2} I_{2t} + \alpha_{11}^{1/\gamma_1} e_t^{+2} + \alpha_{12}^{1/\gamma_2} e_t^{-2}$, and $K = \sum_{i=0}^{m-1} {m \choose i} E[\xi_{t-1}^i \alpha_{0t-1}^{m-i}] < \infty$.

Now let $\varepsilon > 0$ be fixed. Since g(x) increases as x increases, (3.10) yields that there exist $\rho', 0 < \rho < \rho' < 1$, $B < \infty$ and $M < M' < \infty$ so that $\mu([0, M']) > \infty$,

$$E[g_i(h_t)|h_{t-1} = x] \le \rho' g(x) - \varepsilon, \quad x > M'$$
(3.11)

and

$$E[g_i(h_t)|h_{t-1} = x] \le B < \infty, \quad x \le M'.$$
 (3.12)

Applying Lemma 2.1, Lemma 2.2 and Theorem 2.1 together with (3.11) and (3.12), we can deduce the desired results.

For the case (d2), (d3) and (d4), we take $g(x) = x^{\gamma_2 m} + 1$, $g(x) = x^{\gamma_1 m} + 1$ and $g(x) = x^{\gamma_1 \gamma_2 m} + 1$, respectively. Then we obtain the results for each case by using the same method adopted for the proof of the case (d1).

References

- Bollerslev, T. (1986). Generalized autoregressive conditional heteroscedasticity. Journal of Econometrics, 31, 307-327.
- Chen, M. and An, H. Z. (1998). A note on the stationarity and existence of moments of the GARCH model. Statistica Sinica, 8, 505-510.
- Ding, Z., Engle, R. F. and Granger, C. W. J. (1993). Long memory properties of stock market returns and a new model. *Journal of Empirical Finance*, 1, 83-106.

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. *Econometrica*, **50**, 987-1007.

He, C. and Terasvirta, T. (1999). Properties of moments of a family of GARCH processes. Journal of Econometrics, 92, 173-192.

Hwang, S. Y. and Basawa, I. V. (2004). Stationarity and moments structure for Box-Cox transformed GARCH(1.1) processes. *Statistics & Probability Letters*, 68, 209-220.

Oesook Lee

Kim, S. Y. and Hwang, S. Y. (2005). Binary random power approach to modeling asymmetric conditional heteroscedasticity. *Journal of Korean Statistical Society*, 34, 61-71.

Lee, O. (2006). Long memory and covariance stationarity of asymmetric power FIGARCH model. Journal of Korean Data & Information Science Society, 17, 983-990.

Lee, O. (2007a). On strict stationarity of nonlinear time series models without irreducibility or continuity condition. Journal of Korean Data & Information Science Society, 18, 211-218.

Lee, O. (2007b). Sufficient conditions for stationarity of smooth transition ARMA/GARCH models. Journal of Korean Data & Information Science Society, 18, 237-245.

Lee, O. (2007c). A study on Box-Cox transformed threshold GARCH(1,1) process. Communications of the Korean Statistical Society, 14, 141-146.

Ling, S. and McAleer, M. (2002). Stationarity and the existence of moments of a family of GARCH processes. Journal of Econometrics, 106, 109-117.

Liu, J. C. (2006). On the tail behaviors of Box-Cox transformed threshold GARCH(1.1) process. Statistics Probability Letters, 76, 1323-1330.

Meitz, M. (2006). A necessary and sufficient conditions for the strict stationarity of a family of GARCH processes. *Econometric Theory*, 22, 985-988.

Meyn, S. P. and Tweedie, R. L. (1993). Markov chain and stochastic stability, Springer, London.

Rabemanjara, R. and Zakoïan, J. M. (1993). Threshold ARCH model and asymmetries in volatility. *Journal* of Applied Econometrics, **9**, 31-49.

Tweedie, R. L. (1983a). Criteria for rates of convergence of Markov chains with application to queueing and storage theory. In *Probability, Statistics and Analysis*, edited by J.F. Kingman and G.E.H. Reuter, Cambridge University Press, Cambridge.

Tweedie, R. L. (1983b). The existence of moments for stationary Markov chains. *Journal of Applied Probability*, **20**, 191-196.