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Abstract

We consider an asymmetric power transformed threshold GARCH(1.1) process and
find sufficient conditions for the existence of a strictly stationary solution, geometric er-
godicity and β−mixing property. Moments conditions are given. Box-Cox transformed
threshold GARCH(1.1) process is also considered as a special case.
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1. Introduction

Since the introduction by Engle (1982) of autoregressive conditional heteroscedastic
(ARCH) models and their generalization by Bollerslev (1986), numerous GARCH-type mod-
els have been developed and successfully applied in various fields. Classical GARCH(1,1)
process {εt} is defined as

εt =
√
htet, ht − βht−1 = α0 + α1ε

2
t−1, (1.1)

where β > 0, α0 > 0, α1 ≥ 0, and {et} is a sequence of independent and identically dis-
tributed random variables with zero mean. et is independent of εt−1, εt−2, · · · .

Classical GARCH process fails to explain the asymmetric phenomena, since in the model,
the conditional variance is a function of only the magnitudes of the lagged residual but not
their signs. Threshold GARCH model is a model that accounts for the asymmetric effects.

Li and Li (1996) introduce a class of threshold ARCH process where the asymmetry in
conditional variances is represented via threshold:

ht = α0 + α11(ε+2
t−1) + α12(ε−2t−1),
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where ε+t = max(0, εt), ε
−
t = max(0,−εt), ε+2

t = (ε+t )2, and ε−2t = (ε−t )2.
As a nonlinear asymmetric model, power transformed threshold models are suggested and

studied by many authors (Ding et al., 1993; Ling and McAleer, 2002; Hwang and Basawa,
2004; Liu, 2006; Lee, 2006, 2007a, 2007b).

He and Terasvirta (1999) suggest the general GARCH(1,1) model:

εt = htet, h
γ
t = g(et−1) + c(et−1)hγt−1. (1.2)

Ling and McAleer (2002) show the existence of moments and a unique αγ-order stationary
solution of (1.2), i.e., there exists a unique strictly stationary solution ht of (1.2) with
Ehαγt <∞ under some moments conditions on et.

Hwang and Basawa (2004) propose a Box-Cox transformed threshold GARCH(1,1) model
for the time series {εt} which is defined by

εt =
√
htet, hγt − βh

γ
t−1 = α0 + α11(ε+2

t−1)γ + α12(ε−2t−1)γ , (1.3)

where γ > 0, β ≥ 0, α0 > 0, α11 ≥ 0, α12 ≥ 0. They show that if β + α11E[(e+2
t )γ ] +

α12E[(e−2t )γ ] < 1, then the process hγt has a unique strictly stationary solution hγ∗t =
α0 + α0

∑∞
k=1 Πk

i=1(β + α11(e+2
t−i)

γ + α12(e−2t−i)
γ) whose infinite sum is finite almost surely.

Lee (2007c) show the geometric ergodicity of the process of (1.3) under some additional
assumption on et. Liu (2006) and Meitz (2006) prove that the process has a unique strictly
stationary ergodic solution if and only if E[ln(β + α11(e+2

t )γ + α12(e−2t )γ)] < 0. Moments
conditions and tail behavior are also considered.

Kim and Hwang (2005) examine a class of models possessing threshold asymmetric con-
ditional variance to which distinct power transformation parameters are applied according
to the sign of et. The model is given by

hγ1t = α0 + α11(ε2t−1)γ1 , if εt−1 ≥ 0 (1.4)

hγ2t = α0 + α12(ε2t−1)γ2 , if εt−1 < 0 (1.5)

where α0 > 0, α11, α12 ≥ 0, γ1, γ2 > 0. Parameter estimations and comparative data
analysis are studied and it is observed that for certain data, (1.4)-(1.5) is better than some
other traditional models.

In this paper, we consider the asymmetric power transformed threshold GARCH(1,1)
process defined by;

εt =
√
htet, (1.6)

hγ1t − βh
γ1
t−1 = α0 + α11(ε2t−1)γ1 , if εt−1 ≥ 0 (1.7)

hγ2t − βh
γ2
t−1 = α0 + α12(ε2t−1)γ2 , if εt−1 < 0 (1.8)

where α0 > 0, α11, α12, β ≥ 0, γ1, γ2 > 0.
We aim to find sufficient conditions under which the given process is strictly stationary,

geometrically ergodic and beta-mixing with exponential decay. Existence of moments is also
examined.

We let {Xt : t ≥ 0} be a temporarily homogeneous Markov chain taking values in (E, E),
where E is a set and E is a countably generated σ−algebra of subsets of E, with transition
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probabilities given by p(t)(x,A) = P (Xt ∈ A|X0 = x), x ∈ E, A ∈ E . In this paper E = R+

and E is the σ−algebra of Borel sets.
The Markov chain {Xt} is φ−irreducible if, for some σ−finite measure φ on (E, E),∑
t p

(t)(x,A) > 0 for all x ∈ E, whenever φ(A) > 0. A set B ∈ E is said to be small
( with respect to φ ) if φ(B) > 0 and for every A ∈ E with φ(A) > 0, there exists j ≥ 1 such

that infx∈B
∑j
t=1 p

(t)(x,A) > 0.
{Xt} is ergodic if there exists a probability measure π on (E, E) such that limt→∞ ‖p(t)(x, ·)−

π(·)‖ = 0 for all x ∈ E, where ‖ · ‖ denotes the total variation norm. If {Xt} is ergodic and
there exists a ρ, 0 < ρ < 1 such that limt→∞ ρ−t‖p(t)(x, ·) − π(·)‖ = 0 for all x ∈ E, then
{Xt} is said to be geometrically ergodic.

If {Xt} is a Markov process with initial distribution as its invariant measure π(dx), then
{Xt} is stationary β−mixing with exponential decay if there exist 0 < ρ < 1 and c > 0 such
that

∫
‖p(t)(x, ·)− π(·)‖π(dx) ≤ cρt, ∀t ∈ N.

To obtain our main result, we owe the following theorem to Tweedie (1983a, 1983b).

Theorem 1.1 Suppose that {Xt} is a φ−irreducible aperiodic Markov chain with one-step
transition probability function p(x, dy). If there exist, for some small set A, a nonnegative
measurable function g, ρ, 0 < ρ < 1 and ε > 0 satisfying∫

p(x, dy)g(y) ≤ ρg(x)− ε, x ∈ Ac, (1.9)

and

sup
x∈A

∫
p(x, dy)g(y) <∞, (1.10)

then {Xt} is geometric ergodic. If {Xt} is initialized from an invariant initial distribution,
say π, it is strictly stationary and β−mixing with exponential decay. Moreover, Eπg(X1) <
∞.

Readers are referred to Meyn and Tweedie (1993) for additional definitions and properties
in Markov chain context.

2. Main results

{ht} given in (1.6)-(1.8) can be rewritten as

ht = (α0 + (α11e
2γ1
t−1 + β)hγ1t−1)1/γ1 I1t−1

+(α0 + (α12e
2γ2
t−1 + β)hγ2t−1)1/γ2 I2t−1, (2.1)

where I1t = I(et ≥ 0), I2t = 1− I1t, and I(A) is the indicator function of A.

{ht} given by (2.1) is a Markov chain with t−step transition probability function
p(t)(x,A) = P (ht ∈ A|h0 = x) and p(1)(x,A) = p(x,A).

Throughout this paper, we assume that et has an absolutely continuous distribution whose
probability density function is positive everywhere on R and E|et|2 <∞. For simplicity of

notations, let p = P (et ≥ 0), q = P (et < 0), e+2γ
t = (e+t )2γ , e−2γt = (e−t )2γ .
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Lemma 2.1 {ht} generated by (2.1) is µ−irreducible with some σ−finite measure µ on R+

if one of the following conditions holds:
(c1) γ1 > 1, γ2 > 1, and

β1/γ1p+ β1/γ2q + α
1/γ1
11 E(e+2

t ) + α
1/γ2
12 E(e−2t ) < 1;

(c2) γ1 > 1, 0 < γ2 ≤ 1, and

βq + βγ2/γ1p+ α
γ2/γ1
11 E(e+2γ2

t ) + α12E(e−2γ2t ) < 1;
(c3) 0 < γ1 ≤ 1, γ2 > 1, and

βp+ βγ1/γ2q + α11E(e+2γ1
t ) + α

γ1/γ2
12 E(e−2γ1t ) < 1;

(c4) 0 < γ1 ≤ 1, 0 < γ2 ≤ 1, and
βγ1q + βγ2p+ αγ211E(e+2γ1γ2

t ) + αγ112E(e−2γ1γ2t ) < 1.

Lemma 2.2 Consider a Markov chain {ht} given by (2.1). If one of (c1)-(c4) holds, {ht} is
aperiodic and [c, d] with 0 ≤ c < d <∞ and µ([c, d]) > 0 is a small set. Here µ is a σ−finite
measure defined in the proof of lemma 2.1.

We make the following assumptions:
(d1) E(e2mt ) <∞, γ1 > 1, γ2 > 1, and

E(β1/γ1I1t + β1/γ2I2t + α
1/γ1
11 e+2

t + α
1/γ2
12 e−2t )m < 1;

(d2) E(e2γ2mt ) <∞, γ1 > 1, 0 < γ2 ≤ 1, and

E(βI2t + βγ2/γ1I1t + α
γ2/γ1
11 e+2γ2

t + α12e
−2γ2
t )m < 1;

(d3) E(e2γ1mt ) <∞, 0 < γ1 ≤ 1, γ2 > 1, and

E(βI1t + βγ1/γ2I2t + α11e
+2γ1
t + α

γ1/γ2
12 e−2γ1t )m < 1;

(d4) E(e2γ1γ2mt ) <∞, 0 < γ1 ≤ 1, 0 < γ2 ≤ 1, and
E(βγ1I2t + βγ2I1t + αγ211e

+2γ1γ2
t + αγ112e

−2γ1γ2
t )m < 1.

Theorem 2.1 If one of the conditions (d1)-(d4) holds for some integer m ≥ 1, then {ht}
given by (1.6)-(1.8) is geometrically ergodic and {ht} initialized from invariant probability
π is strictly stationary and β−mixing with exponential decay. If one of (d1)-(d4) holds for
some integer m ≥ 1, then E(hmt ) < ∞, E(hγ1mt ) < ∞, E(hγ2mt ) < ∞ or E(hγ1γ2mt ) < ∞,
respectively.

Corollary 2.1 If γ1 = γ2 = γ > 0, (2.1) reduces to the Box-Cox transformed threshold
GARCH(1,1) process (1.3) and if one of the following (2.2) and (2.3) holds for some positive
integer m ≥ 1

γ ≥ 1, E(β1/γ + α
1/γ
11 e+2

t + α
1/γ
12 e−2t )m < 1, (2.2)

0 < γ < 1, E(βγ + αγ11e
+2γ
t + αγ12e

−2γ
t )m < 1, (2.3)

then the conclusion of theorem 2.1 holds.

Remark 2.1 Consider the Box-Cox transformed threshold GARCH(1.1) process given by
(1.3). It is proved that if

β + α11E(e+2γ
t ) + α12E(e−2γt ) < 1, (2.4)

then {hγt } is geometric ergodic and β−mixing process. Proof can be found in Lee (2007c).

Remark 2.2 Note that (2.4) or one of (2.2) and (2.3) with m = 1 is not superior to each
other.
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3. Proofs

Proof of Lemma 2.1 : Recall that (a+ b)γ ≤ aγ + bγ if a > 0, b > 0 and 0 ≤ γ ≤ 1.
(c1) Suppose that γ1 > 1 and γ2 > 1. We may assume without loss of generality that

α11 > 0.
For any x ∈ R+,

p(x,A) = P (ht ∈ A|ht−1 = x) (3.1)

= P (et−1 ≥ 0)P ((α0 + (α11e
+2γ1
t−1 + β)xγ1)1/γ1 ∈ A)

+P (et−1 < 0)P ((α0 + (α12e
−2γ2
t−1 + β)xγ2)1/γ2 ∈ A).

Define µ(A) = λ(Aγ1 ∩ [α∗ + (α∗(1 − r)−1 + 1)γ1 , ∞)) where λ is a Lebesgue measure

on R+, α∗ = max{α0, E(α0t)}, r = E(βt + ηt) < 1, α0t = α
1/γ1
0 I1t + α

1/γ2
0 I2t, βt =

β1/γ1I1t + β1/γ2I2t, ηt = α
1/γ1
11 e+2

t + α
1/γ2
12 e−2t .

Let A be a Borel set with µ(A) > 0 and let a = max{inf Aγ1 , α∗ + (α∗(1 − r)−1 + 1)γ1},
where Aγ1 = {xγ1 |x ∈ A} and inf Aγ1 = inf{xγ1 |x ∈ A}.

For any x with 0 < xγ1 < a − α0, the fact x−γ1(a − α0) − β > 0 yields that λ(B) > 0
where B = x−γ1(Aγ1 − α0)− β. Hence we have that

p(x,A) ≥ P (et−1 ≥ 0)P ((α0 + (α11e
+2γ1
t−1 + β)xγ1)1/γ1 ∈ A)

= p P (α11e
+2γ1
t−1 ∈ B)

= p

∫
B

q(y)dy

> 0, (3.2)

where q(·) is a probability density function of α11e
+2γ1
t which is positive on R+.

Note that the following inequality holds:

ht ≤ α0t−1 +

t−1∑
k=1

Πk
i=1(βt−i + ηt−i)α0,t−i−1 + Πt

i=1(βt−i + ηt−i)h0. (3.3)

From (3.3), we have that for any x ∈ R+,

E[ht|h0 = x] ≤ E(α0t)(1 + r + r2 + · · ·+ rt−1) + rtx

≤ E(α0t)

1− r
+ 1, (3.4)

for sufficiently large t.
Since a ≥ α∗ + (α∗(1− r)−1 + 1)γ1 , for any x satisfying xγ1 ≥ a− α0, we have that

P (hγ1t0 ≤ a− α
∗|h0 = x) = P (ht0 ≤ (a− α∗)1/γ1 |h0 = x)

≥ P (ht0 ≤ α∗(1− r)−1 + 1|h0 = x)

≥ P (ht0 ≤
E(α0t)

1− r
+ 1|h0 = x)

> 0 (3.5)

for some t0 = t0(x) ≥ 1. The last inequality in (3.5) is obtained from (3.4).
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Let {ht(x) : t ≥ 0} denote {ht} in (2.1) if h0 = x, x ∈ R+.

Combining (3.2) and (3.5), we have that for any xγ1 ≥ a− α0,

p(t0+1)(x,A) = P (ht0+1 ∈ A|h0 = x)
≥ P (hγ1t0 (x) ≤ a− α∗)P (ht0+1(x) ∈ A|hγ1t0 (x) ≤ a− α∗)
> 0. (3.6)

Thus, from (3.2) and (3.6), irreducibility of {ht} under the assumption (c1) is proved.

Suppose that (c2) holds. In this case, we define that µ(A) = λ(Aγ2 ∩ [α∗ + α∗(1− r)−1 +

1, ∞)) where α∗ = max{α0, E(α0t)}, r = E(βt + ηt) < 1, α0t = α
γ2/γ1
0 I1t + α0I2t, βt =

βγ2/γ1I1t+βI2t, ηt = α
γ2/γ1
11 e+2γ2

t +α12e
−2γ2
t . Take a = max{inf Aγ2 , α∗+α∗(1− r)−1 + 1}.

For the case (c3), let µ(A) = λ(Aγ1 ∩ [α∗ + α∗(1 − r)−1 + 1, ∞)) where α∗ =

max{α0, E(α0t)}, r = E(βt + ηt) < 1, α0t = α
γ1/γ2
0 I1t + α0I2t, βt = βγ1/γ2I1t + βI2t, ηt =

α
γ1/γ2
11 e+2γ1

t + α12e
−2γ2
t . Take a = max{inf Aγ1 , α∗ + α∗(1− r)−1 + 1}.

Under the assumption (c4), we define µ(A) = λ(Aγ1γ2 ∩ [α∗+α∗(1− r)−1 + 1, ∞)) where
α∗ = max{α0, E(α0t)}, r = E(βt+ηt) < 1, α0t = αγ20 I1t+α

γ1
0 I2t, βt = βγ2I1t+β

γ1I2t, ηt =
αγ211e

+2γ1γ2
t + αγ112e

−2γ1γ2
t . Let a = max{inf Aγ1γ2 , α∗ + (α∗(1− r)−1 + 1)}.

Since the remaining parts of the proof of (c2)-(c4) are basically the same as those of the
case (c1), details are omitted.

Proof of Lemma 2.2: We first consider the case (c1). Suppose that A is a Borel set with
µ(A) > 0 and let µ([c, d]) > 0.

Let dγ1 < a− α0. If x ∈ [c, d], then xγ1 < dγ1 < a− α0 and

inf
x∈[c,d]

p(x,A) ≥
∫
B(d)

g(y) > 0, (3.7)

where B(d) = d−γ1(Aγ1 − α0)− β. Note that B(y) ⊂ B(x) if x < y.
Now assume that a − α0 < dγ1 . By virtue of (3.5), there exists t0 = t0(d) such that

P (hγ1t0 ≤ a − α∗|h0 = d) > 0 and hence using(3.3)-(3.5), we obtain that for any x < d,
P (hγ1t0 ≤ a− α

∗|h0 = x) > 0.
Therefore we have that for any x < d,

p(t0+1)(x,A) ≥ P (hγ1t0 (d) ≤ a− α∗)P (ht0+1(x) ∈ A|hγ1t0 (d) ≤ a− α∗)
> 0. (3.8)

Consequently from (3.7) and (3.8), for any A with µ(A) > 0, we may choose t0 such that

inf
x∈[c,d]

t0+1∑
t=1

p(t)(x,A) > 0,

which implies that [c, d] with µ([c, d]) > 0 is a small set.
Moreover, if t > t0(d), then (3.5) holds for all x ∈ [c, d], which implies that

P (hγ1t (x) ∈ [c, d]) > 0 and P (hγ1t+1(x) ∈ [c, d]) > 0, (3.9)
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for every x ∈ [c, d]. Aperiodicity of {ht} follows from, together with (3.9), the fact that [c, d]
is a small set.

Proof of Theorem 2.1: Recall that [E(X)]m ≤ E(Xm),m ≥ 1.
(d1) Suppose that (d1) holds for some integer m ≥ 1. Define a test function g : R+ → R+

by g(x) = xm + 1. Then

E[g(ht)|ht−1 = x]
≤ 1 + E[(α0t−1 + ξt−1x)m]

= 1 + E(ξmt−1x
m +

m−1∑
i=0

(
m

i

)
(ξit−1α

m−i
0t−1)xi

≤ 1 + E(ξmt−1)xm +

m−1∑
i=0

(
m

i

)
E[ξit−1α

m−i
0t−1](1 + x)m−1

= (1 + xm)(
(E(ξmt−1)− 1)xm +K(1 + x)m−1

1 + xm
)

≤ ρ(1 + xm), x ≥M (3.10)

for some ρ < 1 and sufficiently large M < ∞, where α0t = α
1/γ1
0 I1t + α

1/γ2
0 I2t, ξt =

β
1/γ1
t I1t + β1/γ2I2t + α

1/γ1
11 e+2

t + α
1/γ2
12 e−2t , and K =

∑m−1
i=0

(
m
i

)
E[ξit−1α

m−i
0t−1] <∞.

Now let ε > 0 be fixed. Since g(x) increases as x increases, (3.10) yields that there exist
ρ′, 0 < ρ < ρ′ < 1, B <∞ and M < M ′ <∞ so that µ([0,M ′]) >∞,

E[gi(ht)|ht−1 = x] ≤ ρ′g(x)− ε, x > M ′ (3.11)

and
E[gi(ht)|ht−1 = x] ≤ B <∞, x ≤M ′. (3.12)

Applying Lemma 2.1, Lemma 2.2 and Theorem 2.1 together with (3.11) and (3.12), we
can deduce the desired results.

For the case (d2), (d3) and (d4), we take g(x) = xγ2m + 1, g(x) = xγ1m + 1 and g(x) =
xγ1γ2m+1, respectively. Then we obtain the results for each case by using the same method
adopted for the proof of the case (d1).
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