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A Study on Box-Cox Transformed Threshold
GARCH(1,1) Process*

O. LeeV

Abstract

In this paper, we consider a Box-Cox transformed threshold GARCH(1,1)
process and find a sufficient condition under which the process is geomet-
rically ergodic and has the f—mixing property with an exponential decay
rate.

Keywords: Box-Cox transform; threshold GARCH; stationarity; geometrically ergotic;

beta-mixing.

1. Introduction

Since the introduction of the seminal paper on autoregressive conditional het-
eroskedasticity (ARCH) process of Engle (1982) where the conditional variance
is stochastic and dependent on past observation, ARCH-family process has been
most adopted for modeling time varying conditional volatility. Following the nat-
ural extension of the ARMA process as a parsimonious representation of a higher
order AR process, a generalized ARCH (GARCH) process is proposed by Boller-
slev (1986). The classical GARCH model is formulated as a linear combination
of squared observations and lagged conditional variances. However, the GARCH
process fails to explain the asymmetric phenomena, since in the model, the con-
ditional variance is a function of only the magnitudes of the lagged residuals but
not their signs. A model that accounts for the asymmetric effect of the “news” is
the threshold GARCH (TARCH) model of Rabemanjara and Zakoian (1993). In
the TARCH model, good news and bad news have different effects on the condi-
tional variance. On the other hand, most of the ARCH-type models deal with the
conditional variance. However, in many cases, appropriate measure of volatility
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is the standard deviation rather than the variance as noted by Barndorff-Nielsen
and Shephard (2002). A class of models where the conditional standard deviation
is taken as a measure of volatility is given by Ding et al. (1993) using the power
ARCH model.

As a nonlinear and non-symmetric model, Box-Cox transformed processes
are suggested and studied by many authors (see, e.g., Ling and McAleer (2002),
Hwang and Basawa (2004), Liu (2006) etc.)

We consider in this paper the Box-Cox transformed threshold GARCH(1,1)
process which is defined by

€t = \/Etet, (1.1)
hi = o+ on1(67%)° + cnz(g2)’ + ohi_y, (1.2)

where § > 0,¢ > 0,00 > 0,11 > 0,12 > 0 and {e;} is a sequence of #d
random variables with mean zero and El|e;|[** < co. Here we use the notations
ef? = (¢f)%,e;% = (e;)? and ¢ = max{e;,0},e; = max{—e,0}.

For statistical analysis on the model, stationarity, (geometric) ergodicity, ex-
istence of moments and mixing properties are of great importance. Ling and
McAleer (2002) and Hwang and Basawa (2004) find a sufficient condition for
strict stationarity and moments of the process generated by (1.1) and (1.2). They
show that if ¢ + a11E[(e;%)%] + a12E[(e; %)%] < 1, then the process {h} has the
unique strictly stationary solution with finite first moment given by he* = ag +
0o 2 TTE (¢ + a11(ef®)? + ana(e; ?)°) where the infinite sum is finite almost
surely. Liu (2006) and Meitz (2005) prove that the process has a unique strictly
stationary ergodic solution if and only if E[in(¢ + ay1(ef?)? + aa(e; 2)%)] < 0.
Moments condition and tail behavior are also considered.

The goal of this paper is to find a sufficient condition for geometric ergodicity
and S—mixing with exponential decay of the Box-Cox transformed process of
(1.1) and (1.2).

We let {X; : t > 0} be a temporarily homogeneous Markov chain taking
values in (E,£), where E is a set and £ is a countably generated o—algebra of
subsets of E, with transition probabilities given by p® (z,A) = P(X; € A|Xo =
z), z € E, A€ &. In this paper E = R™ and £ is the c—algebra of Borel sets.

The Markov chain {X;} is ¢—irreducible if, for some o—finite measure ¢ on
(E, &), 3, p®(z, A) > 0 for all z € E, whenever ¢(A) > 0.

{X:} is ergodic if there exists a probability measure 7w on (E,£) such that
lim; o0 |p® (z,-) — 7(:)|| = O for all z € E, where || - || denotes the total vari-
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ation norm. If {X;} is ergodic and there exists a p, 0 < p < 1 such that
lim;_,e0 p~t|lp® (z,-) — 7(-)|| = 0 for all z € E, then {X;} is said to be geometri-
cally ergodic.

If {X:} is a Markov process with initial distribution as its invariant measure
w(dz), then {X;} is stationary S—mixing with exponential decay if there exist
0 < p<1and c> 0 such that [ ||p®(x, ) — n(-)||7(dz) < cpt, Vte N.

{X:} is called a Feller chain if for each bounded continuous function g, the
function of z given by E[g(X}:)|X;—1 = ] is also continuous.

One of the well known way to prove geometric ergodicity and mixing property
is to use the Foster-Lyapounov drift condition given in the following Theorem 1.1
due to Tweedie (1983).

Theorem 1.1 Suppose that {X;} is a ¢~—irreducible aperiodic Feller chain.
If there exists, for some compact set A, a nonnegative function g and € > 0
satisfying

/ P(z,dy)o(y) < pg(@) — ¢, T € A°, (1.3)
and
sup / P(z, dy)g(y) < oo, (1.4)
z€EA

then {X:} is geometric ergodic. If {X.} is initialized from an invariant initial
distribution, it is strictly stationary and B—mizing with exponential decay.

The reader is referred to Meyn and Tweedie (1993) for additional definitions
and properties in Markov chain context.

2. Main Results

The model (1.1)-(1.2) can be rewritten as follows:

e = Vhgey, (2.1)
hy = a0+ (¢ + onn(f)’ + caz(e;3))h,
= op+ (¢ +m—1)h_1, (2:2)

where 7; =11 (6] 2)° +-a12(e; ?)?. Note that e; is independent of h¢, S, h¢ ,,---,
and {h{} is a Markov chain with ¢—step transition probability function pW(z, A)=
P(h € Alh = ).
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Lemma 2.1 {h{} is a Feller chain.

Proof: It is straightforward to prove that, for each bounded continuous func-
tion g on R*, E[g(h)|hl_; = 2] = E[g(co + (¢ + m-1)z)] is continuous in x
according to the bounded convergence theorem, that is, {h?} is a Feller chain. O

Assumption Al. {e} is a sequence of iid random variables with E|e;|? <
oo. Further, its probability distribution function is absolutely continuous with
respect to the Lebesgue measure and such that the probability demsity function
f(z) takes positive values almost everywhere on R*.

Assumption A2. ¢+ Elaai(e]?) + a12(ef?)%] < 1.

Lemma 2.2 Under the assumptions Al and A2, {h$} is p—irreducible and
aperiodic, where u(A) = A(AN[ap(1+ (1 —7)71) +1,00)), 7 = ¢ + E[ms], and A
is the Lebesque measure on R™.

Proof: Note that r = ¢ + E[n;] < 1 by A2. Let A be a Borel set in Rt with
p(A) > 0 and let a = max{inf 4, ag(1+(1—7r)"1)+ 1}, where inf A = inf{z|z €
A}

For any z € RT,

p(z, A) = P(h{ € Alh}_, = )
= P(ao + (¢1+ m_l)w S A)
= P(q-1 € E(A —ag) — ). (2.3)

If0 <z <a- ag, then x(”l)(a — ap) — ¢ > 0 yields that \(B) > 0 where
B = z(-1(4 — ag) — ¢. Hence we have that

p(z, A) = P(n_1 € B) = /B a(v)dy >0, (2.4)

where g(y) is a probability density function of 7.
Now let {h¢(z) : t > 0} denote {h{} in (2.2) if h§ = z, z € R*. Then

t—1

hi(x) = a0+ o0 » T, (¢ +m—s) + Iy (¢ + mes)a.
k=1

For any z € R, we have that

ER (@) = ao(l+r+72 4+ +r7) 47tz



Box-Cox Transformed Threshold GARCH Process 145

< aop(l - r)_l +1, (2.5)

for sufficiently large .
From inequalities (2.5) and ap(1—7)"1 41 < a— oy, for any fixed z > a — ay,

P(hfo(a:) <a—ag) >0, for some ty=tp(z) > 1. (2.6)
We have that

pltD(z, 4) = P(hy 1(2) € A)
> P(hf0 (z) <a-— ao)P(thH(ac) € AIth () < a— ag)
> 0. (2.7)

Last inequality in (2.7) follows from (2.4) and (2.6). Hence if u(A) > 0, then
S0 (z, A) > 0 for all z, and {h{} is p—irreducible.

Now let C = [a,b],a < b,a > ap(1+(1—7)"')+1. From (2.5), we may choose
a positive integer ¢y such that for ¢ > ¢y, (2.5) holds for all z € [a,b], which
implies that

P(hé(z) € [a,b]) > 0, and P(hf+1(:1:) € [a,b]) >0, (2.8)

for every z € [a,b]. Aperiodicity of {h{} follows from, together with (2.8), the
fact that every compact set is a small set, which is obtained from Feller continuity
of {h¢}.

a

Theorem 2.1 Suppose that A1 and A2 hold. Then {h{} is a geometrically
ergodic Markov chain. Moreover, if initialized from its invariant measure, the
process is strictly stationary and 3—mizing with exponential decay.

Proof: By Lemma 2.1 and 2.2, Markov process {h¢} is a u—irreducible ape-
riodic Feller chain. To complete the proof, it remains to find a Lyapounov test
function g such that the inequalities (1.3) and (1.4) hold. Take a test function
g:R" — R* by

g(z)=z+1, (2.9)

then E[g(h)|h¢_, = 2] = 14+ ap + (¢ + E[n_1])z. For any e > 0, we may choose
0, 0< ¢+ Ep] < p<land K, 0 < K < oo such that

Elg(h})|hi_, = 2] < pg(z) —¢, z> K, (2.10)
Elgh)R_ =2] <1+ ap+ K <00, z<K. (2.11)
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Result of the Theorem 2.1 is derived from inequalities (2.10) and (2.11) by
applying Theorem 1.1. O

Remark 2.1 It is proved that if E|e;|?™ < oo, then the necessary and
sufficient condition for the existence of the 26mth moment of the solution of
€& = \/Etet, hg =g+ Qap Zzil H_l;-:zl((ﬁ + 'I7t~7;) is E(¢ + T]t)%m < 1, where m is a
positive integer (see, Ling and McAleer, 2002). Moments structure for each case
of 6 =1/2, § =1, or § = 2 is studied in detail by Hwang and Basawa (2004).
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