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Abstract

Risk analysis is a systematic study of uncertainties and risks we encounter in busi-
ness, engineering, public policy, and many other areas. Value at Risk (VaR) is one of
the most widely used risk measurements in risk management. In this paper, the Ko-
rean Composite Stock Price Index data has been utilized to model the VaR employing
the classical ARMA (1,1)-GARCH (1,1) models with normal, t, generalized hyperbolic,
and generalized pareto distributed errors. The aim of this paper is to compare the
performance of each model in estimating the VaR. The performance of models were
compared in terms of the number of VaR violations and Kupiec exceedance test. The
GARCH-GPD likelihood ratio unconditional test statistic has been found to have the
smallest value among the models.
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1. Introduction

Recent researches, especially in the latter half of 20th century, dealt with the determi-
nation of an explicit trade-off between risk and returns. The specific definition of risk is
very important when used as the stochastic discount factors for asset pricing, it is equally
important to estimate an aggregate measure of risk in portfolio of asset for determination of
risk capital. In a financial risk management, the modeling of extreme market risks and its
impact are important topics. Extreme market risk is risk due to extreme changes in prices
(Ruppert, 2004), e.g. stock market crashes. Although the risk occurs with small probability,
it has large financial consequences. The estimation of the daily Value at Risk (VaR) and
expected shortfall measures are indispensable to study and understand the risk with respect
to the extreme market events.

The aim of this paper is to examine and compare the ability of GARCH (Generalized Auto
Regressive Conditional Heteroscedasticity) model with normal, t, generalized hyperbolic
innovations and GARCH-EVT (Extreme Value Theory) modeling that are used for modeling
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the VaR. Moreover a detailed theoretical overview of both traditional VaR models and
extreme value theory would be discussed.

Several authors have developed models for analyzing Korean Composite Stock Price Index
(KOSPI). Kim and Park (2010) showed the usefulness of GARCH-GPD. Kwon and Lee
(2014) analyzed KOSPI200 and futures using VECM-CC-GARCH model and computed a
hedge ratio from the estimated conditional covariance-variance matrix. Park and Baek (2014)
considered multivariate GARCH models and incorporating risk management measures. Ko
and Son (2015) suggested a one-factor model for the Wiener stochastic process decomposed
into a systematic and an idiosyncratic risk factor. Kim (2011) analyzed the variation of
KOSPI returns using a GARCH-ARJI (auto regressive jump intensity) model. Kim and
Bang (2014) employed a regime switching GJR-GARCH model to KOSPI return. Kim (2014)
conducted a study on the Copula-GARCH model considering the correlation between stock
and bond markets.

In this paper, models considered for producing VaR are like ARMA (Auto Regressive
Moving Average) (1,1)-GARCH (1,1) and GARCH-GPD (Generalized Pareto Distribution).
In ARMA-GARCH model the mean and variance equations of the returns are allowed to
be time varying and these are modeled by ARMA and GARCH models respectively. The
innovations are assumed to be either normally, or t and generalized hyperbolic distribution.
The other class of models augments the GARCH models with GPD during the periods
considered in this paper. The back-testing is a part of the model validation which verifies to
what extent actual losses match expected losses. It is a tool that risk managers apply to check
how well their forecasts on VaR are attuned. In this paper, dynamic back-testing is used to
evaluate the performance of the models. The ugarchfit function and ugarchroll function in
‘rugarch’ package (Ghalanos, 2015), gpdFit function in ‘fExtreme’ package (Wuertz, 2013)
of R program were used for analysis.

2. Methodology

2.1. GARCH Model

Time series for financial data have typical non-normal characters, such as fat tails, volatil-
ity clustering and leverage effect. To describe these features, many different models have been
proposed in the econometrics literature. The standard ARCH model was developed by (En-
gle, 1982) describing volatility dynamics. When the lag of ARCH models became too large,
(Bollerslev, 1986) proposed adopting the generalized ARCH, known as the GARCH model.
GARCH models have found extraordinarily wide use since they incorporate the two main
stylized facts about financial returns, volatility clustering and unconditional non-normality.
The most common form of the GARCH model is the GARCH (1,1) defined as;{

γt = µ+ εt = µ+ σtzt

δ2t = ω + αε2t−1 + βσ2
t ,

with α > 0, β > 0, α + β < 1, γt is the actual return, µ is the expected return, δt is
the volatility of the return on day t. Hence the conditional volatility today depends on the
yesterday innovations (εt = γt−1−µt−1), the yesterday conditional volatility (δt−1) and the
unconditional volatility ω.
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ARMA (1,1)-GARCH (1,1) conditional models are used to account for the time varying
nature of the mean and the variance of returns. It consists of two equations: a conditional
mean equation which specifies the behavior of the returns and a conditional variance equation
which describes the dynamic behavior of the conditional variance. The conditional mean
equation for a GARCH model for a return is given by:

γt = µt + εt,

where εt = δtzt and zt ∼ N(0, 1) or zt ∼ standardized studen’s t distribution or hyperbolic
distribution. From this it follows that E(rt) = µt and V ar(rt) = δ2t . For example, if rt follows
ARMA (1,1), then rt = α0+α1rt−1+β1εt−1+εt. The randomness in the model comes through
the stochastic variables zt, which are the residuals or the innovations of the process. These
residuals are conventionally assumed to be independently and identically distributed and to
follow a normal distribution. The GARCH model with normal innovations is fitted using the
pseudo maximum likelihood procedure. The original ARCH/GARCH models were based on
the normal distribution of the residual terms. However, Blattberg and Gonedes (1974) are
some of the researchers that have examined the distributions of return data and they suggest
the use of the t distribution in estimation and forecasting of market data, as it features the
observed fat tailed properties of market returns. Moreover, there are researches like (Vallena
and Askvik, 2014) on GARCH models that consider the generalized hyperbolic distribution
for the residual. This paper considers the GARCH model with normal, t and generalized
hyperbolic innovations for the residuals.

The normal distribution is a continuous probability distribution and its density function for
a normal random variable is defined by a mean and the standard deviation δ as (Walck, 1996).
It is commonly denoted as N(µ, δ2). The probability density function of the t distribution is
characterized by another parameter termed degrees of freedom (df), related to the variance
of the distribution (Aczel and Sounderpandian, 2009). The degrees of freedom parameter is
defined by df = n− 1, where n is the sample size. The variance related to the df parameter
is approximately defined by;

V ar(f(t)) =
df

(df − 2)
for df > 2.

The other non-normal distribution considered is generalized hyperbolic distribution. The
distribution originates from the standard normal distribution but is modified to incorporate
non normality in skewness and kurtosis, which are the two of the parameters to be estimated
in the pdf of the distribution (Nam and Gup, 2003). The distribution function of a variable
X is defined by:

X = A+BYg,h(Z) = A+B

(
exp(gz)− 1

g

)
exp

(
hz2

2

)
.

According to Nam and Gup (2003), the probability function is a two step transformation
of a standard normal variable Z ∼ N(0, 1).The first step transforms the variable, to a
random variable Y, such that it is only defined by the parameters g (skewness) and h
(kurtosis), defined Yg,h (Z). The second step involves specifying the mean and variance, A
and B respectively of the distribution. The kurtosis of the distribution is defined by two
parameters; the shape parameter which is a measure of peakedness and lambda which is a
direct measure of the tail fatness inherent in the data (Fajardo et al, 2005). This sums up
to a total of five parameters that need to be estimated; location, scale, skewness, shape and
lambda.
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2.2. Generalized Pareto distribution

The Peak Over Threshold (POT) method is employed observations that exceed a given
threshold u constitute extreme events. Considering the excess distribution above, the thresh-
old u given by:

Fu(y) = P

(
X − U ≤ y
x > u

)
=
F (y + u)− F (u)

1− F (u)
.

The Generalized Pareto Distribution (GPD) describes the limiting distribution for model-
ing excesses over a certain threshold. If X is a random variable which is generalized Pareto
distributed, then its distribution function has the form;

Gγ,β(x) =

 1−
(

1− γx
β

)− 1
γ

if γ 6= 0,

1− exp
(
− x
β

)
if γ = 0.

2.3. GARCH-GPD Model

The two step procedure suggested by McNeil (1999) involves a combination of the GARCH
conditional model with the extreme value model. The idea is to first filter the returns, by ap-
plying the GARCH model, to obtain approximately independent and identically distributed
residuals that can then be used in extreme value. The model used in this two-step procedure
is given below.

ri = µi + δizi,

where γi is the return at time i (with historical data available for i = 1, 2, · · · , t, and zi
are random variables distributed i.i.d., and µi and δi are the mean and standard deviation
of the ith return. First step: Filter the observation γi by fitting models for the conditional
variance and conditional mean.The residual from this fit has the form

zi =
ri − µi
δi

.

It is assumed (McNeil, 1999) that the residuals zi are approximately independent and
identically distributed. Second Step: Apply extreme value theroy for these residuals. That
is, zi takes the palce of γt in the extreme value distribution. Briefly this can be summarized
as follows;

(1) The absolute exceedance above a certain threshold are calculated;

ẑi − u/ẑi > u for i = 1, 2, · · · , t.

(2) A GPD model is fitted to these exceedances and the maximum likelihood estimates
of the parameters are obtained. The estimated distribution of the residuals is then
given by

F̂Z(Z) ≈ 1− Nu
n

(
1 +

ξ̂(Z − µ̂)

δ̂

)− 1

ξ̂

.
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(3) VaR is the (1− α)th percentile of F̂z, that means the estimate is

V̂ arα = ẑ1−a ≈ µ̂+
δ̂

ξ̂

([
n

Nu
(α)

]−ξ̂
− 1

)
.

Since the variable of interest stock price index is provided on the daily basis, the two
step procedure will have to be repeated each day. That is, new parameter estimates will be
calculated each day. The estimates for VaR of the model are therefore dynamic. A dynamic
estimate of VaR for day t+1 from the above two step procedure is

V̂ aRt,α = µ̂t + δ̂tV̂ aRα(ẑ).

2.4. Adequacy of VaR measures

Christoffersen (1998) described that the problem of determining the accuracy of a VaR
model can be reduced to the problem of two properties which are unconditional coverage
property and independence property. The unconditional coverage property places a restric-
tion on how often VaR violations may occur. The independence property places a strong
restriction on the ways in which these violations may occur.

Kupiec (1995) suggested the unconditional coverage test based on the numbers of ex-
ceedances of the VaR estimate is proportional to the expected number of exceedances. The
null hypothesis of the test is

H0 : p = p̂ =
x

T
,

where p is the given failure rate corresponding to the confidence level c of the VaR model,
i.e. p = (1− c) and p̂ is equal to the observed failure rate, i.e.the number of exceedances (x)
divided by the sample size (T ).

Christoffersen and Pelletier (2004) defined where the hit sequence follows a first order
Markov sequence with switching probability matrix

P =

[
1− p01 p01
1− p11 p11

]
,

where pij is the probability of an i on day t− 1 being followed by a j on day t.
The test of independence is

H0,ind : p01 = p11.

Finally a test of conditional coverage is

H0,ind : p01 = p11 = p.

The test is set up as a likelihood ratio test. Kupiecs unconditional coverage test statistic
and Christoffersen converage test statistic are defined as

LRuc = −2ln

(
(1− p)T−xpx[

1− x
T

]T−x ( x
T

)x
)
,

LRcc = −2ln

 (1− p01)T01−x0px0
01(1− p11)T11−x1px1

11[
1− x0

T01

]T01−x0
(
x0

T01

)x0
[
1− x1

T11

]T11−x1
(
x1

T11

)x1
 .
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3. Data and analysis

3.1. Data

The log returns of the KOSPI from 05-01-1998 to 04-01-2016 are considered in this paper.
The Figure 3.1 shows the stock price index values over the period 05-01-1998 to 04-01-2016.
The log returns are plotted in Figure 3.2. Some basic statistics pertaining to the data set
are summarized in Table 3.1.

As seen from Figure 3.1, KOSPI is getting increasing with time. Thus, we need to make
the distribution stationary using log return transformation on the KOPSI.

Figure 3.1 KOSPI over the period 05-01-1998 to 04-01-2016

Figure 3.2 Log returns of KOSPI over the period 05-01-1998 to 04-01-2016

The Figure 3.2 depicts how log returns of KOSPI varies with time and displays an illus-
tration of volatility clustering by transcending.

The plot of the autocorrelation function (ACF) of the log returns in Figure 3.3 shows
few significant autocorrelation, providing evidence of the stationarity of the series. However,
the ACF of the squared returns and the absolute returns are highly significant for all lags
and decay slowly. This is a result of the volatility clustering effect and provides evidence
of the existence of ARMA/GARCH effects in the time series. The log returns series is a
suitable candidate for GARCH models. The Dickey-Fuller test (Table 3.1) also indicates
that the series can be assumed to be stationary. First order differences of the log returns



The GARCH-GPD in marke t risks modeling: An empirical exposition on KOSPI 1667

are computed, which is also a common method to achieve stationarity in a time series.
Although the series is stationary, it does not follow a normal distribution, as indicated by
the large excess kurtosis (4.92) and negative skewness (-0.17). The negative skewness is to
be expected for an index of share prices since extreme negative returns are more likely than
extreme positive returns.

Figure 3.3 Autocorrelation Function (ACF) for log return, squared log returns and
absolute log return

Table 3.1 Descriptive statistics for the log returns of KOSPI

Measures Values of Descriptive measure
Mean 0.0004

Standard deviation 0.018
Excess Kurtosis 4.923

Skewness -0.179
Dickey-Fuller Unit Root test Dickey-Fuller=-15.312, p-value=0.01

3.2. The results of parameter estimation

The Table 3.2 depicted GARCH-GPD model and GARCH model fit with student t, normal
and generalized hyperbolic distribution innovations for errors. For the t distribution, the
shape parameter is related to the degrees of freedom parameter which determines the shape
(kurtosis) of its probability density function. For the generalized hyperbolic distribution,
the shape of the distribution is determined by two parameters; the shape parameter which
measures the peakedness, and the GHlambda parameter which relates to the tail fatness
of the probability density function (Fajardo et al, 2005). The parameters of the models are
estimated using the maximum likelihood method.

Table 3.2 GARCH with student t, normal and generalized hyperbolic distribution for errors model fitting

parameters
GARCH-Normal GARCH-t GARCH-Gene. Hyp.
est. s.e. est. s.e. est. s.e.

µ 0.001** (0.000) 0.001*** (0.000) 0.001* (0.000)
AR(1) -0.259 (0.368) -0.515 (0.274) -0.622*** (0.176)
MA(1) 0.299 (0.363) 0.543* (0.269) 0.643*** (0.173)
α0 0.000 (0.001) 0.000 (0.000) 0.001 (0.000)
α1 0.071*** (0.012) 0.065*** (0.007) 0.064*** (0.024)
β1 0.928*** (0.012) 0.934*** (0.007) 0.935*** (0.024)

Shape 7.214*** (0.756) 0.250 (0.274)
Skew -0.087*** (0.022)

Ghlambda 2.278*** (0.301)
*p<0.05, **p<0.01, ***p<0.001
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The parameters for the conditional variance (β1) and the previous days squared residuals
(α1) in Table 3.2 is highly significant for the normal, t and generalized hyperbolic distri-
bution, indicating that including the dependence of previous days conditional variance and
the previous days shock to the volatility makes the GARCH models estimation of variance
more accurate. For normal innovation the inclusion of the previous days shock would make
the estimation of the GARCH model more accurate. While the shape parameter, measuring
kurtosis, is significant for the t distribution only and the GHlambda parameters which mea-
sures the tail fatness is significant for the generalized hyperbolic distribution. This would
indicate that including a kurtosis parameter for t distribution, tail fatness parameter for
generalized hyperbolic distribution has great explanatory power and makes the conditional
variance estimate more precise.

Table 3.3 GARCH-GPD and GARCH with student t, normal and generalized
hyperbolic distribution for errors model fitting (Threshold = 0.99)

GARCH-GPD Estimate Standard Deviation
shape parameter (γ) -0.024 0.412
shape parameter (β) 0.014 0.003

3.3. Value at Risk back testing

Back-testing in VaR is a technique used to compare the predicted losses from the calculated
VaR with the actual losses realized. As is generally done in forecasting practices today, we
have also evaluated the results of the VaR back-testing by using the estimated models in
an out-of-sample period. This is done in risk management practices in order to see how well
the model performs in a sample period not used to estimate the model parameters, since we
would expect the model to fit the estimation sample quite reasonably (Brooks, 2008). Thus,
the in-sample period is the sample period used to estimate the models parameters and the
forecast length period is the sample period held back for the forecast evaluation of the model.
It is recommended to take a large proportion of sample for model parameter estimations.
Therefore, the sample sizes of 3,000 and 1,513 have been used for parameter estimation and
VaR forecast. The outcome of our back-testing with a rolling window is illustrated below
in Fig 4. It shows the number of exceedances for each VaR model, with an alpha level set
at one percent for the back-testing conducted in the specified period. All the returns are
plotted and, as observed, some observations have returns lower than the VaR level.

As seen from Figure 3.4 and Table 3.4, the GARCH model with normal distribution and t
distribution errors accumulate the actual exceedance of 14 and 21 respectively over the back-
testing period length of 1,513. The expected exceedance for both models is 15.1 indicating a
1.4 % actual percentage for normal error and 0.9% actual percentage for t distributed error.
The VaR model with generalized hyperbolic error term accumulate 8 exceedances that is a
0.5% actual percentage, while the VaR model with GARCH models augmented with GPD
model generated 14 exceedances which is 0.9% actual percentage.

Thus, we have some indications that VaR models with normally distributed errors accu-
mulates a larger number of exceedances and the VaR model with generalized hyperbolic gen-
erated the smallest number of exceedance compared to other models. However, it is depicted
in the Kupiec unconditional coverage test, the generalized hyperbolic error underestimate
the VaR and the exceedance are proved to be incorrect. Regarding normal distribution,
there is some indication that errors for VaR do not perform well. The VaR model for sym-
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metric GARCH-GPD model accumulate the actual exceedance of 14 exceedances over the
back-testing period. The expected exceedance is 15.1 indicating a 0.9% actual percentage.

Table 3.4 shows that comparison of the VaR model for GARCH with t, normal and
generalized hyperbolic distribution error and VaR model for symmetric GARCH models
augmented with GPD models depicted that the normal distribution error accumulates higher
number of actual exceedance or higher percentage of exceedance (1.4%) VaR to exceed the
return level more frequent in terms of rapidly changing variance. Considering the number
of exceedances, we found that VaR model for GARCH-GPD and GARCH-t for error term
accumulates equal number of actual VaR exceedance (0.9%).

Figure 3.4 VaR back-testing in the left and the first 50 VaR back-testing in the right

Table 3.4 VaR back-testing and Kupiec test for GARCH with normal, t and generalized hyperbolic
distribution for error and GARCH-GPD

Back-testingEvaluation GARCH-Normal GARCH-t GARCH-Gene. Hyp. GARCH-GPD
Length 1,513 1,513 1,513 1,513

Expected Exceed 15.1 15.1 15.1 15.1
VaR Exceed 21 14 8 14

Actual % 1.4% 0.9% 0.5% 0.9%

We can observe that all the models except the normal model matched the expected num-
ber of exceedance, whereas the normal is deviating. Table 3.5 showed that we cannot reject
the normally distributed error model even though its exceedances are higher than the ex-
pected number. The unconditional coverage test depicted that the null hypothesis does not
hold for generalized hyperbolic distribution. Therefore, we can conclude that GARCH-t and
GARCH-GPD do better in forecasting the VaR in the specified back test length. Further-
more, the unconditional covergrage test depicts that the GARCH-GPD has smaller test
statistic compared to GARCH-t and this makes it relatively better to forecast VaR.
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Table 3.5 Kupiec test for GARCH with normal, t and generalized hyperbolic distribution
for error and GARCH-GPD

Null Hypothesis: Correct exceedance
Distribution GARCH-Normal GARCH-t GARCH-Gene. Hyp. GARCH-GPD

LR. uc Statistic 2.052 0.318 4.098* 0.087
P-value 0.152 0.573 0.043 0.767

4. Conclution

The aim of this paper is to compare performance of GARCH and GARCH-GPD models
on the KOSPI data. In both models, the maximum likelihood estimation has been employed
to estimate model parameters. The performance of GARCH and GARCH-GPD models were
compared in terms of the number of VaR violations. The augmentation of the GARCH with
GPD model and GARCH model with t, generalized hyperbolic innovations for error term
were investigated. The comparison was in terms of the number of VaR violations. Based on
the closeness of the actual number of violations to the expected number of violations, we
can conclude that GARCH-t and GARCH-GPD model do better in forecasting the VaR in
the specified back test length period.
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