• Title/Summary/Keyword: Free in-plane Vibration

Search Result 169, Processing Time 0.031 seconds

Torsional Vibration in Axisymmetric Out-of-plane Vibrations of an Annular Mindlin Plate (환상 민들린 평판의 축대칭 면외 진동에서의 비틀림 진동)

  • Kim, Chang-Boo;Lim, Jung-Ki
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.13-17
    • /
    • 2010
  • This presentation examines the characteristics of torsional vibration in axisymmetric out-of-plane vibrations of an annular Mindin plate. The out-of-plane vibration of circular or annular plates have been investigated since a long years ago by many researchers. When the classical Kirchhoff plate theory neglecting the effect of transverse shear deformation is applied to a thick plate, its out-of-plane natural frequencies are much different from reality. And so, since Minlin presented a plate theory considering the effect of rotary inertia and transverse shear deformation, many researches for the out-of-plane natural vibration of circular or annular Mindin plates have been performed. But almost all researchers missed the torsional vibration due to transverse shear deformation in axisymmetric out-of-plane vibrations of the circular or annular Mindin plate. Therefore, in this presentation, we verify the existence of torsional vibration of an annular plate and present the natural frequencies of an annular plate with free outer boundary surface.

  • PDF

In-Plane free Vibrations of Curved Members with Elastic Supports (탄성지지된 곡선부재의 면내 자유진동)

  • Oh, Sang-Jin;Kang, Hee-Jong;Park, Kwang-Kyou
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.815-818
    • /
    • 2006
  • This paper deals with the free, in-plane vibrations of curved members with the translational(radial and tangential directions) and rotational springs at the ends. The governing differential equations for the circular curved member are solved numerically using the corresponding boundary conditions. The lowest three natural frequencies and the corresponding mode shapes are obtained over a range of non-dimensional system parameters: the subtended angle, the slenderness ratio, the translational spring stiffness, and the rotational spring stiffness.

  • PDF

Vibration Characteristics of a Semi-circular Pipe Conveying Fluid with Both Ends Clamped (유체를 이송하는 양단 고정된 반원관의 면내/면외 진동 특성)

  • 정두한;정진태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.252-257
    • /
    • 2004
  • Free vibration of a semi-circular pipe conveying fluid is analyzed when the pipe is clamped at both ends. To consider the geometric non-linearity, this study adopts the Lagrange strain theory and the extensibility of the pipe. By using the extended Hamilton principle, the non-linear partial differential equations are derived, which are coupled to the in-plane and out-of\ulcornerplant: motions. To investigate the vibration characteristics of the system, the discretized equations of motion are derived from the Galerkin method. The natural frequencies are computed from the linearized equations of motion in the neighborhood of the equilibrium position. From the results. the natural frequencies for the in-plane and out-of-plane motions are vary with the flow velocity. However, no instability occurs the semi-circular pipe with both ends clamped, when taking into account the geometric non-linearity explained by the Lagrange strain theory.

  • PDF

Static and free vibration behaviour of orthotropic elliptic paraboloid shells

  • Darilmaz, Kutlu
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.737-746
    • /
    • 2017
  • In this paper the influence of aspect ratio, height ratio and material angle on static and free vibration behaviour of orthotropic elliptic paraboloid shells is studied by using a four-node hybrid stress finite element. The formulation of the element is based on Hellinger-Reissner variational principle. The element is developed by combining a hybrid plane stress element and a hybrid plate element. A parametric study is carried out for static and free vibration response of orthotropic elliptic paraboloid shells with respect to displacements, internal forces, fundamental frequencies and mode shapes by varying the aspect and height ratios, and material angle.

A study for the Improvement of the Plane Speaker by Time-Averaged Holographic Interferometry (時間 平均 롤러그래픽 干涉計에 의한 平面스피이커의 改善에 관한 硏究)

  • 이기백;김수광;안경면;이병훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.285-291
    • /
    • 1986
  • The plane speaker is inspected by the free vibration theory, the sound pressure, and the holographic interferometry. It is shown that time-average holographic interferometry is useful for the vibration analysis of the plane speaker. The position of supporter dertermined experimentally and theoretically, the value of r/a, is 0.68. Theoretical analysis of the free vibration for the plate agrees pretty well with the experimental results. The plane speaker is distorted vibrationally by the suppoter, but the distortion is not seen in the newly designed speaker.

Nonlinear vibration analysis of carbon nanotube reinforced composite plane structures

  • Rezaiee-Pajand, Mohammad;Masoodi, Amir R.;Rajabzadeh-Safaei, Niloofar
    • Steel and Composite Structures
    • /
    • v.30 no.6
    • /
    • pp.493-516
    • /
    • 2019
  • This paper is dedicated to nonlinear static and free vibration analysis of Uniform Distributed Carbon Nanotube Reinforced Composite (UD-CNTRC) structures under in-plane loading. The authors have suggested an efficient six-node triangular element. Mixed Interpolation of Tensorial Components (MITC) approach is employed to alleviate the membrane locking phenomena. Moreover, the behavior of the well-known LST element is considerably improved by applying an additional linear interpolation on the strain fields. Based on the rule of mixture, the properties of CNTRC are obtained. In this study, only the uniform distributed CNTs are employed through the thickness direction of element. To achieve the natural frequencies and shape modes, the eigenvalue problem is also solved. Using Total Lagrangian Principles, large amplitude free vibration is considered based on the first normalized mode shape of structure. Different well-known plane problem benchmarks and some proposed ones are studied to validate the accuracy and capability of authors' formulations. In addition, the effects of length to the height ratio of beam, CNT's characteristics, support conditions and normalized amplitude parameter on the linear and nonlinear vibration parameters are investigated.

Non-linear Modelling for the Vibration Analysis of a Rotating Thin Ring (회전하는 얇은 링의 진동해석을 위한 비선형 모델링)

  • 김원석;정진태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.319-324
    • /
    • 2001
  • Free non-linear vibration of a rotating thin ring with a constant speed is analyzed when the ring has both the in-plane and out-of-plane motions. The geometric non-linearity of displacements is considered by adopting the Lagrange strain theory for the circumferential strain. By using Hamilton's principle, the coupled non-linear partial differential equations are derived, which describe the out-of-plane and in-plane bending, extensional and torsional motions. The natural frequencies are calculated from the linearized equations at various rotational speeds. Finally, the computation results from three non-linear models are compared with those from a linear model. Based on the comparison, this study recommends which model is appropriate to describe the non- linear behavior more precisely.

  • PDF

Free Vibration Analysis of Timoshenko Arcs with Elastic Supports Using Transfer of Influence Coefficient (영향계수의 전달을 이용한 탄성 지지된 티모센코 호의 자유진동 해석)

  • Choi, Myung-Soo;Yeo, Dong-Jun
    • Journal of Power System Engineering
    • /
    • v.21 no.2
    • /
    • pp.70-76
    • /
    • 2017
  • When Timoshenko arcs considering the shear deformation and rotatory inertia have elastic supports, the authors analyze in-plane free vibration of them by the transfer influence coefficient method. This method finds the natural frequencies of them using the transfer of influence coefficient after obtaining the transfer matrix of arc element from numerical integration of the differential equations governing the vibration of arc. In this study, two computer programs were made by the transfer influence coefficient method and the transfer matrix method for analyzing free vibration of Timoshenko arcs. From numerical results of four computational models, we confirmed that the transfer influence coefficient method is a reliable method when analyzing the free vibration of Timoshenko arcs. In particular, the transfer influence coefficient method is a effective method when analyzing the free vibration of arcs with rigid supports.

Free Vibration Analysis of Arches With General Boundary Condition (일반 경계조건 아치의 자유진동해석)

  • 이태은;이종국;이병구
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.995-999
    • /
    • 2001
  • This paper deals with the free vibrations of arches with general boundary condition. Based on the dynamic equilibrium equations of a arch element acting the stress resultants and the inertia forces, the governing differential equation is derived for the in-plane free vibration of such arches. Differential equations are solved numerically to calculate natural frequencies. In numerical examples, the parabolic arch is considered. The effects of the arch rise to span length ratio, the slenderness ratio, the vertical spring coefficient and the rotational spring coefficient on the natural frequencies are analyzed.

  • PDF

Exact Solutions for Vibration and Buckling of An SS-C-SS-C Rectangular Plate Loaded by Linearly Varying In-plane Stresse (등변분포 평면응력을 받는 SS-C-SS-C 직사각형 판의 진동과 좌굴의 엄밀해)

  • 강재훈;심현주;장경호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.1
    • /
    • pp.56-63
    • /
    • 2004
  • Exact solutions are presented for the free vibration and buckling of rectangular plates haying two opposite edges ( x=0 and a) simply supported and the other two ( y=0 and b) clamped, with the simply supported edges subjected to a linearly varying normal stress $\sigma$$_{x}$=- $N_{0}$[1-a(y/b)]/h, where h is the plate thickness. By assuming the transverse displacement ( w) to vary as sin(m$\pi$x/a), the governing partial differential equation of motion is reduced to an ordinary differential equation in y with variable coefficients. for which an exact solution is obtained as a power series (the method of Frobenius). Applying the clamped boundary conditions at y=0 and byields the frequency determinant. Buckling loads arise as the frequencies approach zero. A careful study of the convergence of the power series is made. Buckling loads are determined for loading parameters a= 0, 0.5, 1, 1.5. 2, for which a=2 is a pure in-plane bending moment. Comparisons are made with published buckling loads for a= 0, 1, 2 obtained by the method of integration of the differential equation (a=0) or the method of energy (a=1, 2). Novel results are presented for the free vibration frequencies of rectangular plates with aspect ratios a/b =0.5, 1, 2 when a=2, with load intensities $N_{0}$ / $N_{cr}$ =0, 0.5, 0.8, 0.95, 1. where $N_{cr}$ is the critical buckling load of the plate. Contour plots of buckling and free vibration mode shapes ate also shown.shown.