Browse > Article
http://dx.doi.org/10.12989/scs.2019.30.6.493

Nonlinear vibration analysis of carbon nanotube reinforced composite plane structures  

Rezaiee-Pajand, Mohammad (Department of Civil Engineering, Ferdowsi University of Mashhad)
Masoodi, Amir R. (Department of Civil Engineering, Ferdowsi University of Mashhad)
Rajabzadeh-Safaei, Niloofar (Department of Civil Engineering, Ferdowsi University of Mashhad)
Publication Information
Steel and Composite Structures / v.30, no.6, 2019 , pp. 493-516 More about this Journal
Abstract
This paper is dedicated to nonlinear static and free vibration analysis of Uniform Distributed Carbon Nanotube Reinforced Composite (UD-CNTRC) structures under in-plane loading. The authors have suggested an efficient six-node triangular element. Mixed Interpolation of Tensorial Components (MITC) approach is employed to alleviate the membrane locking phenomena. Moreover, the behavior of the well-known LST element is considerably improved by applying an additional linear interpolation on the strain fields. Based on the rule of mixture, the properties of CNTRC are obtained. In this study, only the uniform distributed CNTs are employed through the thickness direction of element. To achieve the natural frequencies and shape modes, the eigenvalue problem is also solved. Using Total Lagrangian Principles, large amplitude free vibration is considered based on the first normalized mode shape of structure. Different well-known plane problem benchmarks and some proposed ones are studied to validate the accuracy and capability of authors' formulations. In addition, the effects of length to the height ratio of beam, CNT's characteristics, support conditions and normalized amplitude parameter on the linear and nonlinear vibration parameters are investigated.
Keywords
nonlinear vibration; carbon nano-tube; MITC approach; plane triangular element; Total Lagrangian principles;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Gupta, K.K. (1979), "Finite dynamic element formulation for a plane triangular element", Int. J. Numer. Methods Eng., 14(10), 1431-1448.   DOI
2 Heydari, M.M., Hafizi Bidgoli, A., Golshani, H.R., Beygipoor, G. and Davoodi, A. (2015), "Nonlinear bending analysis of functionally graded CNT-reinforced composite Mindlin polymeric temperature-dependent plate resting on orthotropic elastomeric medium using GDQM", Nonlinear Dyn., 79(2), 1425-1441.   DOI
3 Hirwani, C.K. and Panda, S.K. (2018), "Numerical nonlinear frequency analysis of pre-damaged curved layered composite structure using higher-order finite element method", Int. J. Non-Linear Mech., 102, 14-24.   DOI
4 Hirwani, C., Mahapatra, T., Panda, S., Sahoo, S., Singh, V. and Patle, B. (2017), "Nonlinear free vibration analysis of laminated carbon/epoxy curved panels", Defence Sci. J., 67(2), 207.   DOI
5 Iu, V., Cheung, Y. and Lau, S. (1985), "Non-linear vibration analysis of multilayer beams by incremental finite elements, Part I: Theory and numerical formulation", J. Sound Vib, 100(3), 359-372.   DOI
6 Kolahdouzan, F., Arani, A.G. and Abdollahian, M. (2018), "Buckling and free vibration analysis of FG-CNTRC-micro sandwich plate", Steel Compos. Struct., Int. J., 26(3), 273-287.
7 Kumar, P. and Srinivas, J. (2017a), "Free vibration, bending and buckling of a FG-CNT reinforced composite beam: Comparative analysis with hybrid laminated composite beam", Multidiscipl. Model. Mater. Struct., 13(4), 590-611.   DOI
8 Kumar, P. and Srinivas, J. (2017b), "Vibration, buckling and bending behavior of functionally graded multi-walled carbon nanotube reinforced polymer composite plates using the layerwise formulation", Compos. Struct., 177, 158-170.   DOI
9 Gupta, K. (1978), "Development of a finite dynamic element for free vibration analysis of two-dimensional structures", Int. J. Numer. Methods Eng., 12(8), 1311-1327.   DOI
10 Sarma, B. and Varadan, T. (1982), "Certain discussions in the finite element formulation of nonlinear vibration analysis", Comput. Struct., 15(6), 643-646.   DOI
11 Sarma, B., Varadan, T. and Prathap, G. (1988), "On various formulations of large amplitude free vibrations of beams", Comput. Struct., 29(6), 959-966.   DOI
12 Shafiei, H. and Setoodeh, A.R. (2017), "Nonlinear free vibration and post-buckling of FG-CNTRC beams on nonlinear foundation", Steel Compos. Struct., Int. J., 24, 65-77.   DOI
13 Shang, H.Y., Machado, R.D., Abdalla Filho, J.E. and Arndt, M. (2017), "Numerical analysis of plane stress free vibration in severely distorted mesh by Generalized Finite Element Method", Eur. J. Mech.-A/Solids, 62, 50-66.   DOI
14 Shen, H.-S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19.   DOI
15 Shen, H.-S., Lin, F. and Xiang, Y. (2017), "Nonlinear vibration of functionally graded graphene-reinforced composite laminated beams resting on elastic foundations in thermal environments", Nonlinear Dyn., 90(2), 899-914.   DOI
16 Singh, G., Rao, G.V. and Iyengar, N. (1990a), "Re-investigation of large-amplitude free vibrations of beams using finite elements", J. Sound Vib., 143(2), 351-355.   DOI
17 Singh, G., Sharma, A. and Rao, G.V. (1990b), "Large-amplitude free vibrations of beams-a discussion on various formulations and assumptions", J. Sound Vib., 142(1), 77-85.   DOI
18 Tahouneh, V. (2017), "Vibration and mode shape analysis of sandwich panel with MWCNTs FG-reinforcement core", Steel Compos. Struct., Int. J., 25(3), 347-360.
19 Tahouneh, V. (2018), "3-D Vibration analysis of FGMWCNTs/Phenolic sandwich sectorial plates", Steel Compos. Struct., Int. J., 26(5), 649-662.
20 Tian, R. and Yagawa, G. (2007), "Allman's triangle, rotational DOF and partition of unity", Int. J. Numer. Methods Eng., 69(4), 837-858.   DOI
21 Tu, Z.-c. and Ou-Yang, Z.-c. (2002), "Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young's moduli dependent on layer number", Phys. Review B, 65(23), 233407.   DOI
22 Valentini, L., Biagiotti, J., Kenny, J.M. and Lopez Manchado, M.A. (2003), "Physical and mechanical behavior of singlewalled carbon nanotube/polypropylene/ethylene-propylenediene rubber nanocomposites", J. Appl. Polym. Sci., 89(10), 2657-2663.   DOI
23 Vodenitcharova, T. and Zhang, L. (2006), "Bending and local buckling of a nanocomposite beam reinforced by a singlewalled carbon nanotube", Int. J. Solids Struct., 43(10), 3006-3024.   DOI
24 Wan, H., Delale, F. and Shen, L. (2005), "Effect of CNT length and CNT-matrix interphase in carbon nanotube (CNT) reinforced composites", Mech. Res. Commun., 32(5), 481-489.   DOI
25 Wattanasakulpong, N. and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Computat. Mater. Sci., 71, 201-208.   DOI
26 Weaver, Jr. W., Timoshenko, S.P. and Young, D.H. (1990). Vibration Problems in Engineering, John Wiley & Sons.
27 Mahapatra, T.R., Mehar, K., Panda, S.K., Dewangan, S. and Dash, S. (2017), "Flexural strength of functionally graded nanotube reinforced sandwich spherical panel", IOP Conference Series: Materials Science and Engineering, IOP Publishing.
28 Marur, S. and Prathap, G. (2005), "Non-linear beam vibration problems and simplifications in finite element models", Computat. Mech., 35(5), 352-360.   DOI
29 Masoodi, A.R. and Arabi, E. (2018), "Geometrically nonlinear thermomechanical analysis of shell-like structures", J. Thermal Stress., 41(1), 37-53.   DOI
30 Mayandi, K. and Jeyaraj, P. (2015), "Bending, buckling and free vibration characteristics of FG-CNT-reinforced polymer composite beam under non-uniform thermal load", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 229(1), 13-28.   DOI
31 Wielentejczyk, P. and Lewandowski, R. (2017), "Geometrically nonlinear, steady state vibration of viscoelastic beams", Int. J. Non-Linear Mech., 89, 177-186.   DOI
32 Yang, F., Sedaghati, R. and Esmailzadeh, E. (2008), "Free in-plane vibration of general curved beams using finite element method", J. Sound Vib., 318(4-5), 850-867.   DOI
33 Mehar, K. and Panda, S.K. (2016a), "Free vibration and bending behaviour of CNT reinforced composite plate using different shear deformation theory", IOP Conference Series: Materials Science and Engineering, IOP Publishing.
34 Mehar, K. and Panda, S.K. (2016b), "Geometrical nonlinear free vibration analysis of FG-CNT reinforced composite flat panel under uniform thermal field", Compos. Struct., 143, 336-346.   DOI
35 Mehar, K. and Panda, S.K. (2016c), "Nonlinear static behavior of FG-CNT reinforced composite flat panel under thermomechanical load", J. Aerosp. Eng., 30(3), 04016100.   DOI
36 Mehar, K. and Panda, S.K. (2017), "Thermoelastic analysis of FGCNT reinforced shear deformable composite plate under various loadings", Int. J. Computat. Methods, 14(2), 1750019.   DOI
37 Mehar, K. and Panda, S.K. (2018a), "Elastic bending and stress analysis of carbon nanotube-reinforced composite plate: Experimental, numerical, and simulation", Adv. Polym. Technol., 37(6), 1643-1657.   DOI
38 Mehar, K. and Panda, S.K. (2018b), "Thermal free vibration behavior of FG-CNT reinforced sandwich curved panel using finite element method", Polym. Compos., 39(8), 2751-2764.   DOI
39 Mehar, K. and Panda, S.K. (2018c), "Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure", Struct. Eng. Mech., Ing. J., 67(6), 565-578.
40 Mehar, K., Panda, S.K., Dehengia, A. and Kar, V.R. (2016), "Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment", J. Sandw. Struct. Mater., 18(2), 151-173.   DOI
41 Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017a), "Theoretical and experimental investigation of vibration characteristic of carbon nanotube reinforced polymer composite structure", Int. J. Mech. Sci., 133, 319-329.   DOI
42 Liu, G., Nguyen-Thoi, T. and Lam, K. (2009), "An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids", J. Sound Vib., 320(4-5), 1100-1130.   DOI
43 Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017b), "Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure", Eur. J. Mech.-A/Solids, 65, 384-396.   DOI
44 Mehar, K., Panda, S.K. and Mahapatra, T.R. (2018a), "Nonlinear Frequency Responses of Functionally Graded Carbon Nanotube-Reinforced Sandwich Curved Panel Under Uniform Temperature Field", Int. J. Appl. Mech., 10(3), 1850028.   DOI
45 Mehar, K., Panda, S.K. and Mahapatra, T.R. (2018b), "Thermoelastic deflection responses of CNT reinforced sandwich shell structure using finite element method", Scientia Iranica, 25(5), 2722-2737.
46 Mehar, K., Panda, S.K. and Patle, B.K. (2018c), "Stress, deflection, and frequency analysis of CNT reinforced graded sandwich plate under uniform and linear thermal environment: A finite element approach", Polym. Compos., 39(10), 3792-3809.   DOI
47 Mei, C. (1972), "Nonlinear vibration of beams by matrix displacement method", AIAA Journal, 10(3), 355-357.   DOI
48 Alijani, F. and Amabili, M. (2014), "Non-linear vibrations of shells: A literature review from 2003 to 2013", Int. J. Non-Linear Mech., 58, 233-257.   DOI
49 Allahkarami, F., Nikkhah-Bahrami, M. and Saryazdi, M.G. (2018), "Nonlinear forced vibration of FG-CNTs-reinforced curved microbeam based on strain gradient theory considering out-ofplane motion", Steel Compos. Struct., Int. J., 26(6), 673-691.
50 Allaoui, A., Bai, S., Cheng, H.-M. and Bai, J. (2002), "Mechanical and electrical properties of a MWNT/epoxy composite", Compos. Sci. Technol., 62(15), 1993-1998.   DOI
51 Allman, D. (1984), "A compatible triangular element including vertex rotations for plane elasticity analysis", Comput. Struct., 19(1-2), 1-8.   DOI
52 Leung, A. and Fung, T. (1989), "Non-linear steady state vibration of frames by finite element method", Int. J. Numer. Methods Eng., 28(7), 1599-1618.   DOI
53 Leung, A., Zhu, B., Zheng, J. and Yang, H. (2004), "Analytic trapezoidal Fourier p-element for vibrating plane problems", J. Sound Vib., 271(1-2), 67-81.   DOI
54 Lewandowski, R. (1994), "Non-linear free vibrations of beams by the finite element and continuation methods", J. Sound Vib., 170(5), 577-593.   DOI
55 Liew, K., Rajendran, S. and Wang, J. (2006), "A quadratic plane triangular element immune to quadratic mesh distortions under quadratic displacement fields", Comput. Methods Appl. Mech. Eng., 195(9-12), 1207-1223.   DOI
56 Liew, K., Lei, Z. and Zhang, L. (2015), "Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review", Compos. Struct., 120, 90-97.   DOI
57 Lin, F. and Xiang, Y. (2014a), "Numerical analysis on nonlinear free vibration of carbon nanotube reinforced composite beams", Int. J. Struct. Stabil. Dyn., 14(1), 1350056.   DOI
58 Lin, F. and Xiang, Y. (2014b), "Vibration of carbon nanotube reinforced composite beams based on the first and third order beam theories", Appl. Math. Model., 38(15-16), 3741-3754.   DOI
59 Liu, G.-R. and Gu, Y. (2001a), "A point interpolation method for two-dimensional solids", Int. J. Numer. Methods Eng., 50(4), 937-951.   DOI
60 Liu, G. and Gu, Y. (2001b), "A local radial point interpolation method (LRPIM) for free vibration analyses of 2-D solids", Journal of Sound and Vibration, 246(1), 29-46.   DOI
61 Amabili, M. (2017), "Nonlinear damping in large-amplitude vibrations: modelling and experiments", Nonlinear Dyn., 1-14.
62 Ansari, R. and Hemmatnezhad, M. (2012), "Nonlinear finite element analysis for vibrations of double-walled carbon nanotubes", Nonlinear Dyn., 67(1), 373-383.   DOI
63 Bergan, P. and Felippa, C.A. (1985), "A triangular membrane element with rotational degrees of freedom", Comput. Methods Appl. Mech. Eng., 50(1), 25-69.   DOI
64 Bhashyam, G. and Prathap, G. (1980), "Galerkin finite element method for non-linear beam vibrations", J. Sound Vib., 72(2), 191-203.   DOI
65 Yas, M. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Pressure Vessels Piping, 98, 119-128.   DOI
66 Yazdani Sarvestani, H. and Ghayoor, H. (2016), "Free vibration analysis of curved nanotube structures", Int. J. Non-Linear Mech., 86, 167-173.   DOI
67 Yu, Z., Guo, X. and Chu, F. (2010), "A multivariable hierarchical finite element for static and vibration analysis of beams", Finite Elem. Anal. Des., 46(8),625-631.   DOI
68 Zhang, L. (2017), "On the study of the effect of in-plane forces on the frequency parameters of CNT-reinforced composite skew plates", Compos. Struct., 160, 824-837.   DOI
69 Zhang, B. and Rajendran, S. (2008), "'FE-Meshfree'QUAD4 element for free-vibration analysis", Comput. Methods Appl. Mech. Eng., 197(45-48), 3595-3604.   DOI
70 Zhang, L., Song, Z. and Liew, K. (2015), "State-space Levy method for vibration analysis of FG-CNT composite plates subjected to in-plane loads based on higher-order shear deformation theory", Compos. Struct., 134, 989-1003.   DOI
71 Mei, C. (1973), "Finite element displacement method for large amplitude free flexural vibrations of beams and plates", Comput. Struct., 3(1), 163-174.   DOI
72 Mei, C. (1986), "Discussion of finite element formulations of nonlinear beam vibrations", Comput. Struct., 22(1), 83-85.   DOI
73 Mir, M., Tahani, M. and Hassani, B. (2017), "Analytical prediction of Young's modulus of carbon nanotubes using a variational method", Appl. Math. Model., 45, 1031-1043.   DOI
74 Zhong, H. and Guo, Q. (2003), "Nonlinear vibration analysis of Timoshenko beams using the Differential Quadrature Method", Nonlinear Dyn., 32(3), 223-234.   DOI
75 Zhou, X., Huang, K. and Li, Z. (2018), "Geometrically nonlinear beam analysis of composite wind turbine blades based on quadrature element method", Int. J. Non-Linear Mech., 104, 87-99.   DOI
76 Mohamed, N., Eltaher, M.A., Mohamed, S.A. and Seddek, L.F. (2018), "Numerical analysis of nonlinear free and forced vibrations of buckled curved beams resting on nonlinear elastic foundations", Int. J. Non-Linear Mech., 101, 157-173.   DOI
77 Qaisi, M. (1997), "A power series solution for the non-linear vibration of beams", J. Sound Vib., 199(4), 587-594.   DOI
78 Rajendran, S. and Zhang, B. (2007), "A "FE-meshfree" QUAD4 element based on partition of unity", Comput. Methods Appl. Mech. Eng., 197(1-4), 128-147.   DOI
79 Rao, S.S. (2007), Vibration of Continuous Systems, John Wiley & Sons.
80 Rao, G.V. and Raju, K.K. (2003), "Large amplitude free vibrations of beams-an energy approach", ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift fur Angewandte Mathematik und Mechanik, 83(7), 493-498.   DOI
81 Rehfield, L.W. (1973), "Nonlinear free vibrations of elastic structures", Int. J. Solids Struct., 9(5), 581-590.   DOI
82 Rezaiee-Pajand, M. and Masoodi, A.R. (2016), "Exact natural frequencies and buckling load of functionally graded material tapered beam-columns considering semi-rigid connections", J. Vib. Control, 24(9), 1787-1808.   DOI
83 Rezaiee-Pajand, M. and Rajabzadeh-Safaei, N. (2016a), "An explicit stiffness matrix for parabolic beam element", Latin Am. J. Solids Struct., 13, 1782-1801.   DOI
84 Billings, S.A. (2013), Nonlinear system identification: NARMAX methods in the time, frequency, and spatio-temporal domains, John Wiley & Sons.
85 Brebbia, C.A. and Walker, S. (2016), Boundary Element Techniques in Engineering, Elsevier.
86 Calio, I. and Greco, A. (2014), "Free vibrations of spatial Timoshenko arches", J. Sound Vibr., 333(19), 4543-4561.   DOI
87 Chavan, S.G. and Lal, A. (2017), "Bending behavior of SWCNT reinforced composite plates", Steel Compos. Struct., Int. J., 24(5), 537-548.
88 Chen, S., Cheung, Y. and Xing, H. (2001), "Nonlinear vibration of plane structures by finite element and incremental harmonic balance method", Nonlinear Dyn., 26(1), 87-104.   DOI
89 Ding, H., Zhu, M.-H. and Chen, L.-Q. (2018), "Nonlinear vibration isolation of a viscoelastic beam", Nonlinear Dyn., 92(2), 325-349.   DOI
90 Rezaiee Pajand, M. and Rajabzadeh Safaei, N. (2016b), "Static and dynamic analysis of circular beams using explicit stiffness matrix", Struct. Eng. Mech., Ing. J., 60(1), 111-130.   DOI
91 Dumir, P. and Bhaskar, A. (1988), "Some erroneous finite element formulations of non-linear vibrations of beams and plates", J. Sound Vib., 123(3), 517-527.   DOI
92 Erik, T.T. and Chou, T.W. (2002), "Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization", J. Phys. D: Appl. Phys., 35(16), L77.   DOI
93 Fajman, P. (2002), "New triangular plane element with drilling degrees of freedom", J. Eng. Mech., 128(4), 413-418.   DOI
94 Felippa, C.A. (2003), "A study of optimal membrane triangles with drilling freedoms", Comput. Methods Appl. Mech. Eng., 192(16-18), 2125-2168.   DOI
95 Feng, Y. and Bert, C.W. (1992), "Application of the quadrature method to flexural vibration analysis of a geometrically nonlinear beam", Nonlinear Dyn., 3(1), 13-18.   DOI
96 Rezaiee-Pajand, M. and Yaghoobi, M. (2014), "An efficient formulation for linear and geometric non-linear membrane elements", Latin Am. J. Solids Struct., 11(6), 1012-1035.   DOI
97 Rezaiee-Pajand, M., Arabi, E. and Masoodi, A.R. (2018a), "A triangular shell element for geometrically nonlinear analysis", Acta Mechanica, 229(1), 323-342.   DOI
98 Rezaiee-Pajand, M., Mokhtari, M. and Masoodi, A.R. (2018b), "Stability and free vibration analysis of tapered sandwich columns with functionally graded core and flexible connections", CEAS Aeronaut. J., 9(4), 629-648.   DOI
99 Rezaiee-Pajand, M., Rajabzadeh-Safaei, N. and Hozhabrossadati, S.M. (2018d), "Three-dimensional deformations of a curved circular beam subjected to thermo-mechanical loading using green's function method", Int. J. Mech. Sci., 142-143, 163-175.   DOI
100 Rezaiee Pajand, M., Masoodi, A. and Arabi, E. (2018e), "Geometrically nonlinear analysis of FG doubly-curved and hyperbolical shells via laminated by new element", Steel Compos. Struct., Int. J., 28(3), 389-401.
101 Rezaiee-Pajand, M., Arabi, E. and Masoodi, A.R. (2019), "Nonlinear analysis of FG-sandwich plates and shells", Aerosp. Sci. Technol. [In Press]
102 Sadri, M., Younesian, D. and Esmailzadeh, E. (2016), "Nonlinear harmonic vibration and stability analysis of a cantilever beam carrying an intermediate lumped mass", Nonlinear Dyn., 84(3), 1667-1682.   DOI
103 Salvetat, J.-P., Bonard, J.-M., Thomson, N.H., Kulik, A.J., Forro, L., Benoit, W. and Zuppiroli, L. (1999), "Mechanical properties of carbon nanotubes", Appl. Phys. A, 69(3), 255-260.   DOI