• 제목/요약/키워드: Fox's H function

검색결과 18건 처리시간 0.023초

ESTIMATION OF A MODIFIED INTEGRAL ASSOCIATED WITH A SPECIAL FUNCTION KERNEL OF FOX'S H-FUNCTION TYPE

  • Al-Omari, Shrideh Khalaf Qasem
    • 대한수학회논문집
    • /
    • 제35권1호
    • /
    • pp.125-136
    • /
    • 2020
  • In this article, we discuss classes of generalized functions for certain modified integral operator of Bessel-type involving Fox's H-function kernel. We employ a known differentiation formula of Fox's H-function to obtain the definition and properties of the distributional modified Bessel-type integral. Further, we derive a smoothness theorem for its kernel in a complete countably multi-normed space. On the other hand, using an appropriate class of convolution products, we derive axioms and establish spaces of modified Boehmians which are generalized distributions. On the defined spaces, we introduce addition, convolution, differentiation and scalar multiplication and further properties of the extended integral.

REAL COVERING OF THE GENERALIZED HANKEL-CLIFFORD TRANSFORM OF FOX KERNEL TYPE OF A CLASS OF BOEHMIANS

  • AGARWAL, PRAVEEN;AL-OMARI, S.K.Q.;CHOI, JUNESANG
    • 대한수학회보
    • /
    • 제52권5호
    • /
    • pp.1607-1619
    • /
    • 2015
  • We investigate some generalization of a class of Hankel-Clifford transformations having Fox H-function as part of its kernel on a class of Boehmians. The generalized transform is a one-to-one and onto mapping compatible with the classical transform. The inverse Hankel-Clifford transforms are also considered in the sense of Boehmians.

NEW SEVEN-PARAMETER MITTAG-LEFFLER FUNCTION WITH CERTAIN ANALYTIC PROPERTIES

  • Maryam K. Rasheed;Abdulrahman H. Majeed
    • Nonlinear Functional Analysis and Applications
    • /
    • 제29권1호
    • /
    • pp.99-111
    • /
    • 2024
  • In this paper, a new seven-parameter Mittag-Leffler function of a single complex variable is proposed as a generalization of the standard Mittag-Leffler function, certain generalizations of Mittag-Leffler function, hypergeometric function and confluent hypergeometric function. Certain essential analytic properties are mainly discussed, such as radius of convergence, order, type, differentiation, Mellin-Barnes integral representation and Euler transform in the complex plane. Its relation to Fox-Wright function and H-function is also developed.

On Finite Integrals Involving Jacobi Polynomials and the $\bar{H}$-function

  • Sharma, Rajendra P.
    • Kyungpook Mathematical Journal
    • /
    • 제46권3호
    • /
    • pp.307-313
    • /
    • 2006
  • In this paper, we first establish an interesting new finite integral whose integrand involves the product of a general class of polynomials introduced by Srivastava [13] and the generalized H-function ([9], [10]) having general argument. Next, we present five special cases of our main integral which are also quite general in nature and of interest by themselves. The first three integrals involve the product of $\bar{H}$-function with Jacobi polynomial, the product of two Jacobi polynomials and the product of two general binomial factors respectively. The fourth integral involves product of Jacobi polynomial and well known Fox's H-function and the last integral involves product of a Jacobi polynomial and 'g' function connected with a certain class of Feynman integral which may have practical applications.

  • PDF