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REAL COVERING OF THE GENERALIZED

HANKEL-CLIFFORD TRANSFORM OF FOX KERNEL TYPE

OF A CLASS OF BOEHMIANS

Praveen Agarwal, S. K. Q. Al-Omari, and Junesang Choi

Abstract. We investigate some generalization of a class of Hankel-Cli-
fford transformations having Fox H-function as part of its kernel on a
class of Boehmians. The generalized transform is a one-to-one and onto
mapping compatible with the classical transform. The inverse Hankel-
Clifford transforms are also considered in the sense of Boehmians.

1. Introduction and preliminaries

One of the most youngest generalizations of functions, and, more particu-
larly, of distributions, is the theory of Boehmians. The idea of construction
of Boehmians was initiated by the concept of regular operators introduced by
Boehme [17]. Regular operators form a subalgebra of the field of Mikusinski
operators and they include only such functions whose supports are bounded
from the left. In a concrete case, the space of Boehmians contains all regular
operators, all distributions and some objects which are neither regular opera-
tors nor distributions. On the other hand, the construction is possible where
there are zero divisors, such as the space of continuous functions with the op-
erations of pointwise addition and convolution. For a somehow much more
detailed account of the abstract construction of Boehmians and its extended
integral transforms, we refer to the references [1]∼[16], [19]∼[23], [27]∼[36].
H-functions, introduced by Fox [18] as symmetrical Fourier kernels, are an

extreme generalization of the generalized hypergeometric function pFq, beyond
Meijer functions. H-functions have recently found applications in a large vari-
ety of problems connected with reaction, diffusion, reaction diffusion, engineer-
ing, communication, fractional differential and integral equations and many
areas of theoretical physics and statistical distribution theory as well.
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The utility and importance of the Fox H-function has been realized in re-
cent years due to its occurrence as kernel of certain integral transforms. Most
recently, H-functions, being related to the Mellin transforms, have been recog-
nized to play a fundamental role in fractional calculus as well as their applica-
tions.

According to a standard notation, the Fox’s H-function is defined as

(1) Hm,n
p,q (z) =

1

2πi

∫

L

m,np,q (ς) zςdς,

where L is a suitable path in the complex plane, zς = exp {ς (log |z|+ i arg z)}
and

m,np,q (ς) =
a (ς) b (ς)

c (ς)d (ς)
,

where

a (ς) :=

m∏

j=1

Γ (bj − βjς) , b (ς) :=

n∏

j=1

Γ (1− aj + αjς) ,

c (ς) :=

q∏

j=m+1

Γ (1− bj − βjς) and d (ς) :=

p∏

j=n+1

Γ (aj + αjς)

with aj , bj ∈ C, αj , βj ∈ R+ and m, p, q ∈ N, n ∈ N0 := N ∪ {0} satisfying
0 ≤ n < p and 1 ≤ m < q. Here C, R, R+ and N denote, respectively, the sets
of complex numbers, real numbers, positive real numbers and positive integers.

The integral representation of (1) of the H-functions, by involving products
and notations of gamma functions, is known to be of Mellin-Barnes integral
type. A compact notation is usually adopted for

Hm,n
p,q (z) = Hm,n

p,q

[
z

∣∣∣∣
(aj, αj)j=1,2,...,p

(bj, βj)j=1,2,...,q

]
.

A useful and important formula for the H-function is that

Hm,n
p,q

[
z

∣∣∣∣
(aj , αj)j=1,2,...,p

(bj , βj)j=1,2,...,q

]
= Hn,m

q,p

[
1

z

∣∣∣∣
(1− bj , βj)j=1,2,...,q

(1− aj , αj)j=1,2,...,p

]
,

which transforms the H-function with argument z to one with argument 1/z.
Other important properties of the Fox H-function, which can be easily de-

rived from its definition, are included in the list below:

(a) The H-function is symmetric in the set of pairs (a1, α1), (a2, α2) , . . .,
(ap, αp) and (b1, β1), (b2, β2) , . . ., (bq, βq).

(b) If one of the (aj , αj) (j = 1, . . . , n) is equal to one of the (bj, βj)
(j = m + 1, . . . , q), or, one of the pairs (aj , αj) (j = n + 1, . . . , p) is
equal to one of the (bj , βj) (j = 1, . . . ,m), then the H-function reduces
to one of the lower order, that is, p, q and n (or m) decrease by a unity.
In fact, if n > 1 and q > m, we have
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(i) (a1, α1) = (bq, βq)

Hm,n
p,q

[
z

∣∣∣∣
(aj , αj)j=1,2,...,p

(bj , βj)j=1,2,...,q−1
(a1, α1)

]
= Hm,n−1

p−1,q−1

[
z

∣∣∣∣
(aj , αj)j=2,...,p

(bj , βj)j=1,2,...,q−1

]
;

(ii) (ap, αp) = (b1, β1)

Hm,n
p,q

[
z

∣∣∣∣
(aj , αj)j=1,2,...,p−1

(b1, β1)

(b1, β1) (bj, βj)j=2,...,q

]
= Hm−1,n

p−1,q−1

[
z

∣∣∣∣
(aj , αj)j=1,2,...,p−1

(bj , βj)j=2,...,q−1

]
;

(iii) aj → aj + σ αj (j = 1, . . . , p) and bj → bj + σ βj (j = 1, . . . , q)

zσHm,n
p,q

[
z

∣∣∣∣
(aj , αj)j=1,2,...,p

(bj, βj)j=1,2,...,q

]
= Hm,n

p,q

[
z

∣∣∣∣
(aj + σαj , αj)j=1,2,...,p

(bj + σβj , βj)j=1,2,...,q

]
;

(iv) αj → c αj (j = 1, . . . , p) and βj → c βj (j = 1, . . . , q)

1

c
Hm,n
p,q

[
z

∣∣∣∣
(aj , αj)j=1,2,...,p

(bj , βj)j=1,2,...,q

]
= Hm,n

p,q

[
zc

∣∣∣∣
(aj, cαj)j=1,2,...,p

(bj, cβj)j=1,2,...,q

]
.

A few interesting special cases of the H-function, which may be useful for
researchers on integral transforms, fractional calculus, special functions, applied
statistics, physical and engineering sciences, and astrophysics, are given here:

(i) The relation connecting Whittaker function and MacRobert’s E-func-
tion is given as

Hp,1
q+1,p

[
z

∣∣∣∣
(1, 1) (β1, 1) , . . . , (βq, 1)
(α1, 1) , . . . , (αp, 1)

]
= E (α1, . . . , αp;β1, . . . , βq; z) .

(ii) The relation connecting Whittaker function and theH-function is given
as

Hp,1
q+1,p

[
z2

4

∣∣∣∣
(ρ− k + 1, 1)(
ρ+m+ 1

2
, 1
)
,
(
ρ−m+ 1

2
, 1
)

]
= zρe−

1
2Wk,m (z) .

(iii) The relation connecting Whittaker function and Mittag-Liffler function
is given as

H1,1
1,2

[
−z

∣∣∣∣
(0, 1)
(0, 1) , (1− β, α)

]
= Eα,β (z) .

For further properties of H-functions, see [26].

The generalized Hankel-Clifford transform of a function f of one variable is
defined by (see [24, Eq. (1.3)])

£βα (f (τ)) (y) = J (y) = y−α−β
∫

∞

0

(yτ)
(α+β)

2 Jα−β (2
√
yτ ) f (τ) dτ,

where Jα−β is the Bessel function of first kind of order α−β ≥ − 1
2
for α, β ∈ R.

It is useful for readers to take notice that the transform under consideration
as an extension of both Hankel-Clifford and Hankel transforms was extended
to a certain class of generalized functions by Malgonde and Bandewar in [25].
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In view of [24, Eq. (1.7)], the generalized Hankel-Clifford transformation can
be rectified in terms of Fox H-function as in the following definition.

Definition 1. Let f be a function defined onR+. Then, the generalized Hankel-
Clifford transformation of f (τ) is defined as

(2) £βα (f (τ)) (y) =

∫
∞

0

y−α−βH1,0
0,2

[
yτ

∣∣∣∣
−
(α, 1) , (β, 1)

]
f (τ) dτ,

where the H-function is displayed here as

Hm,n
p,q [z] = Hm,n

p,q

[
z

∣∣∣∣
−
(α, 1) , (β, 1)

]
.

Definition 2 (see [24, Eq. (3.3)]). For c, d ∈ R, the spaceMc,d denotes the set
of all smooth functions ψ (τ) (τ ∈ R+) such that

ξc,d,k (ψ (τ)) = sup
τ∈R+

∣∣∣̺c,d (− log τ) (−τDτ )
k
(τψ (τ))

∣∣∣

is finite for k ∈ N0, where

̺c,d (− log τ) =

{
τ−c (0 < τ ≤ 1),
τ−d (1 < τ ≤ ∞).

For simple notations, we write ξc,d,k as

(3) ξc,d,k (ψ (τ)) = sup
τ∈R+

∣∣∣̺τ,kc,d (τψ (τ))
∣∣∣ ,

where ̺τ,kc,d = ̺c,d (− log τ) (−τDτ )
k.

The topology of Mc,d is generalized by the set of multinorms {ξc,d,k}∞k=0
.

Hence, as a consequence,Mc,d is a complete countable multinormed space. The

dual space of Mc,d is denoted by M
′

c,d.

Let D (R+) denote the set of test functions of compact supports. Then

D (R+) ⊂Mc,d and, therefore, the restriction of t ∈M
′

c,d to D (R+) belongs to

D
′

(R+), the space of distributions.
A function ϕ is said to belong toM loc

c,d if ϕ ∈Mc,d and ϕ is locally integrable

on R+.

We need the following constructive definition.

Definition 3. Let ϕ and ψ be integrable functions defined on R
+. Then we

define a convolution product between ϕ and ψ as follows:

(4)
(
ϕ×βα ψ

)
(y) =

∫
∞

0

ϕ (yx)∆β
αψ (x) dx,

where ∆β
αψ (z) = zα+βψ (z) .

We also recall the Mellin type convolution product g of two integrable func-
tions ϕ and ψ defined by

(5) (ϕg ψ) (τ) =

∫
∞

0

ϕ
(
τx−1

)
∆−1ψ (x) dx,
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where ∆−1ψ (z) = z−1ψ (z).

There is a relationship between the two types of products given in (4) and
(5) asserted by the following theorem.

Theorem 1. For two integrable functions ϕ and ψ defined on R+, we have the

following relation:

(6) £βα (ϕg ψ) (y) =
(
£βαϕ×βα ψ

)
(y) .

Proof. From (2) and (5), we have

£βα (ϕg ψ) (y)

= y−α−β
∫

∞

0

H1,0
0,2

[
yτ

∣∣∣∣
−
(α, 1) , (β, 1)

] ∫
∞

0

ϕ
(
τx−1

)
∆−1ψ (x) dxdτ.

Setting the variables with xz = τ and changing the order of integrations, which
may be guaranteed by Fubini’s theorem, we obtain

£βα (ϕg ψ) (y)=

∫
∞

0

∆β
αψ (x)

(
(yx)

−α−β

∫
∞

0

H1,0
0,2

[
yxz

∣∣∣∣
(α, 1)
(β, 1)

]
ϕ (z)dz

)
dx

=

∫
∞

0

£βα (ϕ) (yx)∆
β
αψ (x) dx.(7)

By appealing to (4), the last expression of (7) is easily seen to be equal to the
right-hand side of (6). This completes the proof. �

2. Generalized spaces of Boehmians

In what follows we shall make a free use of some properties of the Mellin
type product and therefore we find it worthwhile to describe them briefly as
follows (see [35]):

(i) ϕg ψ = ψ g ϕ;
(ii) (ϕg ψ)g ψ1 = ϕg (ψ g ψ1) ;
(iii) (ϕg ψ)g ψ1 = (ϕg ψ1)g ϕ;
(iv) ϕg (ψ + ψ1) = ϕg ψ + ϕg ψ1;
(v) (αϕ)g ψ1 = α (ϕg ψ1) ,

where ϕ, ψ1 and ψ are integrable functions defined on R
+, and α is a constant.

Now we establish the Boehmian space β
(
M loc
c,d ,×βα

)
where ∆ is a set of

sequences {δn} of D (R+) satisfying following properties:

(Prop. 1)

∫
∞

0

δn (x) dx = 1 for all n ∈ N;

(Prop. 2) |δn (x)| < M for some M ∈ R
+;

(Prop. 3) supp δn (x) ⊆ (an, bn) , an, bn → 0 as n→ ∞.

The following results are straightforward from simple integration.
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Theorem 2. Let {ϕn}, ϕ ∈ M loc
c,d , and ψ, ψ1 ∈ D (R+), α∗ ∈ C and ϕn → ϕ

in M loc
c,d as n→ ∞. Then we have

(i) ϕ×βα (ψ + ψ1) = ϕ×βα ψ + ϕ×βα ψ1;
(ii) (α∗ϕ)×βα ψ = α∗

(
ϕ×βα ψ

)
;

(iii) ϕn ×βα ψ → ϕ×βα ψ in M loc
c,d as n→ ∞.

Theorem 3. Let ϕ ∈M loc
c,d and ψ ∈ D (R+) . Then we have ϕ×βα ψ ∈M loc

c,d .

Proof. In view of (4), we find∣∣∣∣̺
τ,k
c,d

(∫
∞

0

ϕ (yx)∆β
αψ (x) dx

)∣∣∣∣ ≤
∫

K

∣∣∣̺τ,kc,d (ϕ (yx))
∣∣∣
∣∣∆β

αψ (x)
∣∣ dx,

where K is a compact subset of R+ containing the support of ψ. Hence, taking
supremum over the compact subset K of R+ gives

ξc,d,k
(
ϕ×βα ψ

)
≤ ξc,d,k (ϕ)

∫

K

∣∣∆β
αψ (x)

∣∣ dx.

That is,
ξc,d,k

(
ϕ×βα ψ

)
≤ Nξc,d,k (ϕ) ,

where

N :=

∫

K

∣∣∆β
αψ (x)

∣∣ dx.
This completes the proof. �

Theorem 4. Let ϕ ∈M loc
c,d and {δn} ∈ ∆. Then we have ϕ×βα δn → ϕ in M loc

c,d

as n→ ∞.

Proof. By using (3) and Prop. 1 of ∆ we write∣∣∣̺τ,kc,d
(
τ
(
ϕ×βα δn − ϕ

)
(τ)

)∣∣∣(8)

=

∣∣∣∣̺
τ,k
c,dτ

(∫
∞

0

ϕ (τx)∆β
αδn (x) dx

)∣∣∣∣−
∣∣∣∣̺
τ,k
c,dτ

(
ϕ (τ)

∫
∞

0

δn (x) dx

)∣∣∣∣

≤
∫ bn

an

∣∣∣̺τ,kc,d
(
τ
(
ϕ (τx) −∆−β

−αϕ (τ)
))∣∣∣

∣∣∆β
αδn (x)

∣∣ dx.

In view of Props. 2 and 3 of ∆, (8) gives∣∣∣̺τ,kc,d
(
τ
(
ϕ×βα δn − ϕ

)
(τ)

)∣∣∣(9)

≤ M

∫ bn

an

∣∣∣̺τ,kc,d
(
τ
(
ϕ (τx) −∆−β

−αϕ (τ)
))∣∣∣

∣∣xα+β
∣∣ dx

≤ M

∫ bn

an

(∣∣xα+β
∣∣ ξc,d,k (ϕ)− ξc,d,k (ϕ)

)
dx.

Integrating the last expression in (9), we obtain∣∣∣̺τ,kc,d
(
τ
(
ϕ×βα δn − ϕ

)
(τ)

)∣∣∣
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≤ Mξc,d,k (ϕ)

∫ bn

an

(∣∣xα+β
∣∣− 1

)
dx

= Mξc,d,k (ϕ)

{
(bn)

α+β+1 − (an)
α+β+1

α+ β + 1
− (bn − an)

}
.

Finally, by using Prop. 3 of ∆ sequences, as n → ∞, since α, β ∈ R+, we
obtain ∣∣∣̺τ,kc,d

(
τ
(
ϕ×βα δn − ϕ

)
(τ)

)∣∣∣ → 0.

This completes the proof. �

It is noted that β
(
M loc
c,d ,×βα

)
is recognized as a space of Boehmians.

Theorem 5. Let ϕ ∈M loc
c,d , and ψ, ψ1 ∈ D (R+). Then we have

ϕ×βα (ψ g ψ1) =
(
ϕ×βα ψ

)
×βα ψ1.

Proof. By using (4) and (5), we apply Fubini’s theorem to change the order of
integrals to get

(
ϕ×βα (ψ g ψ1)

)
(y) =

∫
∞

0

ϕ (yx)∆β
α (ψ g ψ1) (x) dx

=

∫
∞

0

ϕ (yx)xα+β
(∫

∞

0

ψ
(
xτ−1

)
∆−1ψ1 (τ) dτ

)
dx

=

∫
∞

0

∆−1ψ1 (τ)

(∫
∞

0

xα+βϕ (yx)ψ
(
xτ−1

)
dx

)
dτ.

Changing variables xτ−1 = z gives

(
ϕ×βα (ψ g ψ1)

)
(y) =

∫
∞

0

∆β
αψ1 (τ)

(∫
∞

0

ϕ (yτz)∆β
αψ (z)dz

)

=

∫
∞

0

∆β
αψ1 (τ) (ϕ×α,β ψ) (yτ) dτ

=
((
ϕ×βα ψ

)
×βα ψ1

)
(y) .

This completes the proof. �

Construction of the space β
(
M loc
c,d ,g

)
may follow from that of the space

β
(
M loc
c,d ,×βα

)
in a similar way.

The sum of two Boehmians and multiplication by a scalar in β
(
M loc
c,d ,×βα

)

can be defined as follows:
[
ϕn
δn

]
+

[
ψn
εn

]
=

[
ϕn ×βα εn + ψn ×βα δn

δn g εn

]
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and

α

[
ϕn
δn

]
=

[
α
ϕn
δn

]
=

[
αϕn
δn

]
(α ∈ C).

The operation ×βα and the differentiation are defined by
[
ϕn
δn

]
×βα

[
ψn
εn

]
=

[
ϕn ×βα ψn
δn g εn

]

and

Dα

[
ϕn
δn

]
=

[
Dαϕn
δn

]
.

Let
[
ϕn

δn

]
∈ β

(
M loc
c,d ,×βα

)
and ω ∈ M loc

c,d . Then the operation ×βα can be

extended to β
(
M loc
c,d ,×βα

)
×M loc

c,d by

[
ϕn
δn

]
×βα ω =

[
ϕn ×βα ω

δn

]
.

A sequence of Boehmians {βn} in β
(
M loc
c,d ,×βα

)
is said to be δ-convergent

to a Boehmian β in β
(
M loc
c,d ,×βα

)
, denoted by βn

δ→ β, if there exists a delta

sequence {δn} such that

βn ×βα δn, β ×βα δn ∈M loc
c,d for all k, n ∈ N

and

βn ×βα δn → β ×βα δn in M loc
c,d , as n→ ∞ for every k ∈ N.

Here is an equivalent statement for δ-convergence:

βn
δ→ β in β

(
M loc
c,d ,×βα

)
as n → ∞, if and only if there is ϕn,k, ϕk ∈ M loc

c,d

and δk ∈ ∆ such that βn =
[
ϕn,k

δk

]
, β =

[
ϕk

δk

]
and, for each k ∈ N, ϕn,k → ϕk

in M loc
c,d as n→ ∞.

A sequence of Boehmians {βn} in β
(
M loc
c,d ,×βα

)
is said to be ∆-convergent to

a Boehmian β in β
(
M loc
c,d ,×βα

)
, denoted by βn

∆→ β, if there exists a sequence

{δn} ∈ ∆ such that (βn − β) ×βα δn ∈ M loc
c,d (n ∈ N), and (βn − β) ×βα δn → 0

in M loc
c,d as n→ ∞.

It is noted that, similarly as above, operations of addition and multiplication

for g, and convergence on β
(
M loc
c,d ,g

)
can be defined.

3. £
β
α of Boehmians

Here we begin by recalling the following required lemma (see [24, Lemma
4.1]).
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Lemma. Let y > 0 be fixed and c < 1 + α, and d > 0. Then we have

t−α−βH1,0
0,2

[
yτ

∣∣∣∣
−
(α, 1) , (β, 1)

]
∈Mc,d.

The following theorem is easily established.

Theorem 6. Let y > 0 be fixed, c < 1 + α, d > 0 and let ϕ ∈ M loc
c,d . Then we

have

£βαϕ ∈M loc
c,d .

Proof. Let K be a compact subset of I. Then we find from Theorem 5 and
Lemma that

ξc,d,k
(
£βαϕ (y)

)

= sup
y∈I

∣∣∣̺τ,yc,d
(
y£βαϕ (y)

)∣∣∣

=

∫

K

|ϕ (τ)|
(∣∣∣∣̺

τ,y
c,d

(
y

(
y−α−βH1,0

0,2

[
yτ

∣∣∣∣
−
(α, 1) , (β, 1)

]))∣∣∣∣
)
dτ

≤ ξc,d,k

(
y−α−βH1,0

0,2

[
yτ

∣∣∣∣
−
(α, 1) , (β, 1)

])∫

K

|ϕ (τ)| dτ <∞,

since ϕ is locally integrable over R+.
This completes the proof. �

By the aid of Theorem 6, we define the generalized Hankel-Clifford transform

of Fox kernel type of
[
ϕn

δn

]
∈ β

(
M loc
c,d ,g

)
as

£̂
β
α

[
ϕn
δn

]
=

[
£βαϕn
δn

]

in the space β
(
M loc
c,d ,×βα

)
.

Theorem 7. The operator £̂
β
α is well-defined and linear from β

(
M loc
c,d ,g

)
into

β
(
M loc
c,d ,×βα

)
.

Proof. Let
[
ϕn

δn

]
=

[
ψn

εn

]
∈ β

(
M loc
c,d ,g

)
. Then we have

ϕn g εm = ψm g δn = ψn g δm.

Applying £βα on both sides of the above equation and using Theorem 1 imply

£βαϕn ×βα εm = £βαψn ×βα δm (n, m ∈ N).

That is, [
£βαϕn
δn

]
=

[
£βαψn
εn

]
.



1616 P. AGARWAL, S. K. Q. AL-OMARI, AND J. CHOI

We show that the £̂
β
α : β

(
M loc
c,d ,g

)
→ β

(
M loc
c,d ,×βα

)
is linear. Indeed, let

[
ϕn

δn

]
,
[
ψn

εn

]
∈ β

(
M loc
c,d ,g

)
. Then by Theorem 1 we can write

£̂
β
α

([
ϕn
δn

]
+

[
ψn
εn

])
= £̂

β
α

([
ϕn g εn + ψn g δn

δn g εn

])

=

[
£βα (ϕn g εn) +£βα (ψn g δn)

δn g εn

]

=

[
£βαϕn ×βα εn +£βαψn ×βα δn

rn g εn

]

=

[
£βαϕn
δn

]
+

[
£βαψn
εn

]
.

Hence

£̂
β
α

([
ϕn
δn

]
+

[
ψn
εn

])
= £̂

β
α

[
ϕn
δn

]
+ £̂

β
α

[
ψn
εn

]
.

Also, if α ∈ C, then we have

α£̂βα

[
ϕn
δn

]
= α

[
£βαϕn
δn

]
=

[
£βα (αϕn)

δn

]
.

Hence

α£̂βα

[
ϕn
δn

]
= £̂

β
α

(
α

[
ϕn
δn

])
.

This completes the proof. �

Theorem 8. The mapping £̂
β
α : β

(
M loc
c,d ,g

)
→ β

(
M loc
c,d ,×βα

)
is an isomor-

phism.

Proof. Let
[
£

β
αϕn

δn

]
=

[
£

β
αψn

εn

]
∈ β

(
M loc
c,d ,×βα

)
. Then, by using Theorem 1, we

get £βαϕn ×βα εm = £βαψm ×βα δn. Once again, Theorem 1 implies

£βα
(
ϕn ×βα εm

)
= £βα

(
ψm ×βα δn

)
.

We thus have ϕn ×βα εm = ψm ×βα δn. Therefore,[
ϕn
δn

]
=

[
ψn
εn

]
∈ β

(
M loc
c,d ,g

)
.

This proves that the mapping is injective. Next the surjection of £̂βα is obvious,

since, for every
[
£

β
αϕn

δn

]
∈ β

(
M loc
c,d ,×βα

)
, there is

[
ϕn

δn

]
∈ β

(
M loc
c,d ,g

)
such that

£̂
β
α

[
ϕn
δn

]
=

[
£βαϕn
δn

]
.

Finally, together with Theorem 7, the proof is complete. �
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Definition 4. Let
[
£

β
αϕn

δn

]
∈ β

(
M loc
c,d ,×βα

)
. Then we define the inverse trans-

form of £̂βα as

(
£̂
β
α

)−1 [
£βαϕn
δn

]
=

[(
£βα

)−1 (
£βαϕn

)

δn

]
=

[
ϕn
δn

]

for each {δn} ∈ ∆.

Theorem 9. Let
[
£

β
αϕn

δn

]
∈ β

(
M loc
c,d ,×βα

)
for some

[
ϕn

δn

]
∈ β

(
M loc
c,d ,g

)
and

φ, ψ ∈ D (I). Then we have

(i)

(
£̂
β
α

)−1 ([
£βαϕn
δn

]
×βα φ

)
=

[
ϕn
δn

]
×βα φ;

(ii) £̂
β
α

([
ϕn
δn

]
g ψ

)
=

[
£βαϕn
δn

]
×βα ψ.

Proof. Let
[
£

β
αϕn

δn

]
∈ β

(
M loc
c,d ,×βα

)
be given. Then, by Theorem 1, we write

(
£̂
β
α

)−1 ([
£βαϕn
δn

]
×βα φ

)
=

(
£̂
β
α

)−1 ([
£βαϕn ×βα φ

δn

])

=

[(
£βα

)−1 (
£βαϕn ×βα φ

)

δn

]
.

To prove the second identity, we use Theorem 1 and Definition 4 to obtain

£̂
β
α

([
ϕn
δn

]
g ψ

)
= £̂

β
α

([
ϕn g ψ

δn

])
=

[
£βαϕn
δn

]
×βα ψ.

This complete the proof. �

Theorem 10. £̂
β
α : β

(
M loc
c,d ,g

)
→ β

(
M loc
c,d ,×βα

)
and

(
£̂
β
α

)−1

: β
(
M loc
c,d ,×βα

)

→ β
(
M loc
c,d ,g

)
are continuous with respect to δ and ∆-convergence.

Proof. A similar proof of this theorem is available in the references of the
second-named author cited here. We omit the proof. �
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