• Title/Summary/Keyword: Fourier transform infrared spectroscopy (FTIR)

Search Result 298, Processing Time 0.026 seconds

Design of Hard Coating Resin for In-mold Decoration (IMD) Foil and Effects of EB Irradiation on IMD Foil Layers (In-mold Decoration(IMD) 포일용 경질 코팅 수지 설계 및 전자빔 조사가 IMD 포일 구성층에 미치는 영향)

  • Sim, Hyun-Seog;Kim, Geon-Seok;Shin, Ji-Hee;Lee, Kwang-Hee
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.268-274
    • /
    • 2012
  • The silane coupling agent, 3-(trimethoxysilyl)propyl methacrylate (${\gamma}$-MPTS), was grafted on the surface of alumina nanoparticles. We used the surface modified nanoparticles in the hard coating layer for in-mold decoration (IMD) foils and evaluated the coating properties such as hardness and anti-abrasion property. The effects of electron beam (EB) irradiation on color layer and anchor layer of IMD foils were observed through the difference in color and the cross-cut tape test, respectively. Also, cure kinetics as studied quantitatively under various reaction temperatures by analysis of surface properties and Fourier transform infrared (FTIR) spectroscopy. From these results, we constructed database for the commercial exploitation of EB curing system.

Optimum Conditions for Introducing Free Radical Polymerizable Methacrylate Groups on the MWCNT Surface by Michael Addition Reaction (MWCNT 표면에 Michael 부가 반응으로 자유 라디칼 중합 가능한 Methacrylate기 도입에 대한 최적 개질 조건)

  • Kim, Sunghoon;Park, Seonghwan;Kwon, Jaebeom;Ha, KiRyong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.83-90
    • /
    • 2015
  • In this study, we investigated optimum conditions for the introduction of a lot of free radical polymerizable methacrylate groups on the multi-walled carbon nanotube (MWCNT) surface. Carboxyl groups were introduced first on MWCNT surfaces by treating with a mixture of sulfuric acid and nitric acid with ultrasonic bath for 2 hours, and oxidized MWCNTs were reacted further with thionyl chloride followed by triethylenetetramine (TETA) to introduce amino groups on the oxidized MWCNT surface, to make MWCNT-$NH_2$. To introduce free radical polymerizable methacrylate groups on the MWCNT-$NH_2$, MWCNT-$NH_2$ was reacted with 3-(acryloyloxy)-2-hydroxypropyl methacrylate (AHM) by Michael addition reaction. We investigated progress of modification reactions for MWCNT by fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and elemental analysis (EA). We found maximum degree of Michael addition reactions between AHM and TETA grafted on MWCNT-$NH_2$ for 10:1 mol ratio and 8 hour reaction time in our reaction conditions.

The effect of light sources and CAD/CAM monolithic blocks on degree of conversion of cement

  • Cetindemir, Aydan Boztuna;Sermet, Bulent;Ongul, Deger
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.4
    • /
    • pp.291-299
    • /
    • 2018
  • PURPOSE. To assess the degree of conversion (DC) and light irradiance delivered to light-cured and dual-cured cements by application of different light sources through various types of monolithic computer-aided design and computer-aided manufacturing (CAD/CAM) materials. MATERIALS AND METHODS. RelyX Ultimate Clicker light-cured and dual-cured resin cement specimens with 1.5-mm thicknesses (n=300, 10/group), were placed under four types of crystalline core structure (Vita Enamic, Vita Suprinity, GC Ceresmart, Degudent Prettau Anterior). The specimens were irradiated for 40 seconds with an LED Soft-Start or pulse-delay unit or 20 seconds with a QTH unit. DC ratios were determined by using Fourier transform infrared spectroscopy (FTIR) after curing the specimen at 1 day and 1 month. The data were analyzed using the Mann-Whitney U test (for paired comparison) and the Kruskal-Wallis H test (for multiple comparison), with a significance level of P<.05. RESULTS. DC values were the highest for RelyX Ultimate Clicker light-cure specimens polymerized with the LED Soft-Start unit. The combination of the Vita Suprinity disc and RelyX Ultimate Clicker dual-cure resin cement yielded significantly higher values at both timepoints with all light units (all, P<.05). CONCLUSION. Within the limitations of this study, we conclude that the DC of RelyX Ultimate Clicker dual-cure resin cement was improved significantly by the use of Vita Suprinity and the LED Soft-Start light unit. We strongly recommend the combined use of an LED light unit and dual-cure luting cement for monolithic ceramic restorations.

Photoluminescence of Nanocrystalline CdS Thin Films Prepared by Chemical Bath Deposition

  • Park, Wug-Dong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.4
    • /
    • pp.170-173
    • /
    • 2010
  • Nanocrystalline cadmium sulfide (CdS) thin films were prepared using chemical bath deposition in a solution bath containing $CdSO_4$, $SC(NH_2)_2$, and $NH_4OH$. The CdS thin films were investigated using X-ray diffraction (XRD), photoluminescence (PL), and Fourier transform infrared spectroscopy (FTIR). The as-deposited CdS thin film prepared at $80^{\circ}C$ for 60 min had a cubic phase with homogeneous and small grains. In the PL spectrum of the 2,900 A-thick CdS thin film, the broad red band around 1.7 eV and the broad high-energy band around 2.7 eV are attributed to the S vacancy and the band-to-band transition, respectively. As the deposition time increases to over 90 min, the PL intensity from the band-to-band transition significantly increases. The temperature dependence of the PL intensity for the CdS thin films was studied from 16 to 300 K. The $E_A$ and $E_B$ activation energies are obtained by fitting the temperature dependence of the PL intensity. The $E_A$ and $E_B$ are caused by the deep trap and shallow surface traps, respectively. From the FTIR analysis of the CdS thin films, a broad absorption band of the OH stretching vibration in the range $3,000-3,600\;cm^{-1}$ and the peak of the CN stretching vibration at $2,000\;cm^{-1}$ were found.

Analysis of Effect of Surface Modified Silica Nanofluid Injection on Carbonate Rock (탄산염암 내 표면개질된 실리카 나노유체 주입 효과 분석)

  • Jang, Hochang
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.2
    • /
    • pp.1-8
    • /
    • 2022
  • The purpose of this study is to prepare GPTMS((3-Glycidoxypropyl) trimethoxysilane)-SiO2 nanofluid and analyze the effect of nanofluid injection on carbonate reservoirs. Structural analysis of silica nanoparticles modified by GPTMS was investigated by FTIR(Fourier transform infrared spectroscopy). C-H stretching vibrations at 2,950 cm-1 indicating the silica surface modification with GPTMS were observed when the silane feed was over 0.5 mmol/g. Also, the coreflooding test by nanofluid injection on the aged limestone and dolomite plug samples was carried out with different particle concentration and flow rate. The incremental oil recovery was up to 18.9%, and contact angle and permeability of carbonate samples were changed by the effect of nanoparticle adsorption on pore which caused wettability alteration and pore size change. Therefore, the prepared nanofluid will be utilized as an injection fluid for enhancing oil recovery and modifying fluid flow properties such as change of rock wettability and permeability in carbonate reservoirs.

Modification of Silica Nanoparticles with Bis[3-(triethoxysilylpropyl)]tetrasulfide and Their Application for SBR Nanocomposite (Bis[3-(triethoxysilylpropyl)]tetrasulfide에 의한 실리카 입자의 표면개질 반응과 SBR 나노 복합체 응용)

  • Ryu, Hyun Soo;Lee, Young Seok;Lee, Jong Cheol;Ha, KiRyong
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.308-315
    • /
    • 2013
  • In this study, we performed surface modification of silica nanoparticles with bis[3-(triethoxysilylpropyl)]tetrasulfide (TESPT) silane coupling agent to study the effects of treatment temperature, treatment time, and amount of TESPT used on the silanization degree with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), elemental analysis (EA) and solid state $^{13}C$ and $^{29}Si$ cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance spectroscopy (NMR). We found peak area of isolated silanol groups at $3747cm^{-1}$ decreased, but peak area of $-CH_2$ asymmetric stretching of TESPT at $2938cm^{-1}$ increased with the amount of TESPT from FTIR measurements. We also used universal testing machine (UTM) to study mechanical properties of styrene butadiene rubber (SBR) nanocomposites with 20 phr (parts per hundred of rubber) of pristine and TESPT modified silicas, respectively. The tensile strength and 100% modulus of modified silica/SBR nanocomposite were enhanced from 5.65 to 9.38MPa, from 1.62 to 2.73 MPa, respectively, compared to those of pristine silica/SBR nanocomposite.

Spectroscopic Analysis on Michael Addition Reaction of Secondary Amino Groups on Silica Surface with 3-(Acryloyloxy)-2-hydroxypropyl Methacrylate (2차 아미노기가 결합된 실리카 나노 입자 표면에 3-(Acryloyloxy)-2-hydroxypropyl Methacrylate의 마이클 부가 반응에 대한 분광학적 분석)

  • Lee, Sangmi;Ha, Ki Ryong
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.257-264
    • /
    • 2014
  • In this study, we modified silica nanoparticles with bis[3-(trimethoxysilyl)propyl]ethylenediamine (BTPED) silane coupling agent, which has two secondary amino groups in a molecule, to introduce amino groups on the silica surface. After modification of silica, we used acrylate group containing 3-(acryloyloxy)-2-hydroxypropyl methacrylate (AHM) to introduce polymerizable methacrylate groups by Michael addition reaction. We used Fourier transform infrared spectroscopy (FTIR), elemental analysis (EA) and liquid and solid state cross polarization magic angle spinning (CP/MAS) nuclear magnetic resonance spectroscopy (NMR) to understand the reactions between N-H groups of BTPED modified silica surface and acrylate groups of AHM monomer. We confirmed Michael addition reaction between BTPED modified silica and AHM completed in 2 hr reaction time. We also found increased methacrylate group introduction with increase of mol ratio of the acrylate group of AHM to N-H group of BTPED modified silica by increase of C=O peak area of measured FTIR spectra. These results were also supported by EA and solid state $^{13}C$ and $^{29}Si$ NMR results.

Stability Enhancement of IZOthin Film Transistor Using SU-8 Passivation Layer (SU-8 패시베이션을 이용한 솔루션 IZO-TFT의안정성 향상에 대한 연구)

  • Kim, Sang-Jo;Yi, Moonsuk
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.7
    • /
    • pp.33-39
    • /
    • 2015
  • In this work, SU-8 passivated IZO thin-film transistors(TFTs) made by solution-processes was investigated for enhancing stability of indium zinc oxide(IZO) TFT. A very viscous negative photoresist SU-8, which has high mechanical and chemical stability, was deposited by spin coating and patterned on top of TFT by photo lithography. To investigate the enhanced electrical performances by using SU-8 passivation layer, the TFT devices were analyzed by X-ray phtoelectron spectroscopy(XPS) and Fourier transform infrared spectroscopy(FTIR). The TFTs with SU-8 passivation layer show good electrical characterestics, such as ${\mu}_{FE}=6.43cm^2/V{\cdot}s$, $V_{th}=7.1V$, $I_{on/off}=10^6$, SS=0.88V/dec, and especially 3.6V of ${\Delta}V_{th}$ under positive bias stress (PBS) for 3600s. On the other hand, without SU-8 passivation, ${\Delta}V_{th}$ was 7.7V. XPS and FTIR analyses results showed that SU-8 passivation layer prevents the oxygen desorption/adsorption processes significantly, and this feature makes the effectiveness of SU-8 passivation layer for PBS.

The application of a chemical assessment of archaeological animal bone by Fourier transform infrared spectroscopy and x-ray diffraction (FTIR과 XRD를 이용한 출토 동물뼈의 화학적 평가 적용)

  • Kang, Soyeong;Cho, Eun Min;Kim, Sue Hoon;Kim, Yun-Ji;Lee, Jeongwon
    • Analytical Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.300-307
    • /
    • 2014
  • For the application of chemical assessment standards by the extent of diagenetic alteration, we investigated three archaeological animal bones and a modern animal bone using Fourier transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy and x-ray diffraction (XRD) analysis. The calculating results of crystallinity index (CI), carbonate-to-phosphate (C/P) and carbonate-to-carbonate (C/C) using FTIR-ATR spectra showed differences CI and C/P according to the preservative condition of animal bones. By comparison of the crystallinity contents using XRD patterns, the states of animal bones were distinguished to the range of $30^{\circ}-35^{\circ}$. As results of FTIR-ATR and XRD analysis, it is suggested that Mongolian large mammals bone presents the best preservative condition, and cattle bone from Naju site, and Haman site followed. In addition, those were correlated with the results of histological index. The results suggested that the chemical assessment standards may contribute to application of predictions of the states of animal bones discovered from Korea.

Impact of inhibitors of amino acid, protein, and RNA synthesis on C allocation in the diatom Chaetoceros muellerii: a FTIR approach

  • Giordano, Mario;Norici, Alessandra;Beardall, John
    • ALGAE
    • /
    • v.32 no.2
    • /
    • pp.161-170
    • /
    • 2017
  • Fourier Transform Infrared (FTIR) spectroscopy was used to study carbon allocation patterns in response to N-starvation in the nearly ubiquitous diatom Chaetoceros muellerii. The role of gene expression, protein synthesis and transamination on the organic composition of cells was tested by using specific inhibitors. The results show that inhibition of key processes in algal metabolism influence the macromolecular composition of cells and and prior cell nutritional state can influence a cell's response to changing nutrient availability. The allocation of C can thus lead to different organic composition depending on the nutritional context, with obvious repercussions for the trophic web. This also shows that C allocation in algal cells is highly flexible and that C (and the energy associated with its allocation) can be variably and rapidly partitioned in algal cells in response to relatively short term perturbations. Furthermore, the data confirm and extend the utility of infrared spectroscopy as a probe of the metabolic state of autotrophic cells.