DOI QR코드

DOI QR Code

Design of Hard Coating Resin for In-mold Decoration (IMD) Foil and Effects of EB Irradiation on IMD Foil Layers

In-mold Decoration(IMD) 포일용 경질 코팅 수지 설계 및 전자빔 조사가 IMD 포일 구성층에 미치는 영향

  • Sim, Hyun-Seog (Department of Polymer Science and Engineering, Inha University) ;
  • Kim, Geon-Seok (Department of Polymer Science and Engineering, Inha University) ;
  • Shin, Ji-Hee (Department of Polymer Science and Engineering, Inha University) ;
  • Lee, Kwang-Hee (Department of Polymer Science and Engineering, Inha University)
  • 심현석 (인하대학교 고분자공학과) ;
  • 김건석 (인하대학교 고분자공학과) ;
  • 신지희 (인하대학교 고분자공학과) ;
  • 이광희 (인하대학교 고분자공학과)
  • Received : 2011.07.18
  • Accepted : 2011.12.17
  • Published : 2012.05.25

Abstract

The silane coupling agent, 3-(trimethoxysilyl)propyl methacrylate (${\gamma}$-MPTS), was grafted on the surface of alumina nanoparticles. We used the surface modified nanoparticles in the hard coating layer for in-mold decoration (IMD) foils and evaluated the coating properties such as hardness and anti-abrasion property. The effects of electron beam (EB) irradiation on color layer and anchor layer of IMD foils were observed through the difference in color and the cross-cut tape test, respectively. Also, cure kinetics as studied quantitatively under various reaction temperatures by analysis of surface properties and Fourier transform infrared (FTIR) spectroscopy. From these results, we constructed database for the commercial exploitation of EB curing system.

실란 커플링제를 사용하여 알루미나 나노 입자의 표면을 처리하였다. 표면을 개질한 나노 입자를 in-mold decoration(IMD) 포일의 경질 코팅 층에 도입하여 표면 경도 및 내마모성을 중심으로 도막의 물성 변화를 평가하였다. 전자빔(electron beam, EB) 조사가 IMD 포일을 구성하는 color layer 및 anchor layer에 미치는 영향을 색도변화와 cross-cut tape 시험을 통하여 평가하였다. 또한 EB 조사 온도에 따른 경화 거동을 표면 물성 변화 평가 및 Fourier transform infrared(FTIR) spectroscopy 관찰을 통해 정량적으로 분석함으로써 EB 경화 공정의 실용화에 필요한 데이터베이스를 구축하였다.

Keywords

Acknowledgement

Supported by : 인하대학교

References

  1. S. C. Chen, S. T. Huang, M. C. Lin, and R. D. Chien, Int. Commun. Heat Mass, 35, 967 (2008). https://doi.org/10.1016/j.icheatmasstransfer.2008.04.008
  2. C. A. Puentesa, O. I. Okolia, and Y. B. Park, Compos. Part A: Appl. Sci. Manuf., 40, 368 (2009). https://doi.org/10.1016/j.compositesa.2008.12.018
  3. G. Y. Kim, K. O. Lee, and S. S. Kang, Polym. Eng. Sci., 49, 2195 (2009). https://doi.org/10.1002/pen.21467
  4. K. Studer, C. Decker, E. Beck, R. Schwalm, and N. Gruber, Prog. Org. Coat., 53, 126 (2005). https://doi.org/10.1016/j.porgcoat.2005.01.010
  5. C. Chen, R. S. Justice, D. W. Schaefer, and J. W. Baur, Polymer, 49, 3805 (2008). https://doi.org/10.1016/j.polymer.2008.06.023
  6. H. R. Hakimelahi, L. Hu, B. B. Rupp, and M. R. Coleman, Polymer, 51, 2494 (2010). https://doi.org/10.1016/j.polymer.2010.04.023
  7. H. S. Sim, D. W. Yun, G. S. Kim, and K. H. Lee, Polymer (Korea), 35, 141 (2011).
  8. S. Zhao, L. S. Schadler, R. Duncana, H. Hillborg and T. Auletta, Compos. Sci. Technol., 68, 2965 (2008). https://doi.org/10.1016/j.compscitech.2008.01.009
  9. I. M. Barrantes, A. Rodriguez, L. Ibarra, L. Gonzalez and J. L. Valentin, J. Mater. Chem., 21, 7381 (2011). https://doi.org/10.1039/c1jm10410a
  10. S. K. Song, J. H. Kim, K. S. Hwang, and K. R. Ha, Korean Chem. Eng. Res., 49, 181 (2011). https://doi.org/10.9713/kcer.2011.49.2.181
  11. B. W. Jacobs, R. J. T. Houk, M. R. Anstey, S. D. House, I. M. Robertson, A. A. Talin, and M. D. Allendorf, Chem. Sci., 2, 411 (2011). https://doi.org/10.1039/c0sc00377h
  12. J. S. Jang and H. S. Kim, Polymer(Korea), 19, 593 (1995).
  13. A. G. Wee, D. T. Lindsey, S. Kuo, and W. M. Johnston, Dent. Mater., 22, 553 (2006). https://doi.org/10.1016/j.dental.2005.05.011
  14. S. Canay and M. C. Cehreli, J. Prosthet. Dent., 89, 474 (2003). https://doi.org/10.1016/S0022-3913(03)00168-9