DOI QR코드

DOI QR Code

Analysis of Effect of Surface Modified Silica Nanofluid Injection on Carbonate Rock

탄산염암 내 표면개질된 실리카 나노유체 주입 효과 분석

  • Jang, Hochang (Division of Energy Engineering, Kangwon National University)
  • 장호창 (강원대학교 에너지공학부(에너지자원융합공학전공))
  • Received : 2022.03.03
  • Accepted : 2022.03.28
  • Published : 2022.04.30

Abstract

The purpose of this study is to prepare GPTMS((3-Glycidoxypropyl) trimethoxysilane)-SiO2 nanofluid and analyze the effect of nanofluid injection on carbonate reservoirs. Structural analysis of silica nanoparticles modified by GPTMS was investigated by FTIR(Fourier transform infrared spectroscopy). C-H stretching vibrations at 2,950 cm-1 indicating the silica surface modification with GPTMS were observed when the silane feed was over 0.5 mmol/g. Also, the coreflooding test by nanofluid injection on the aged limestone and dolomite plug samples was carried out with different particle concentration and flow rate. The incremental oil recovery was up to 18.9%, and contact angle and permeability of carbonate samples were changed by the effect of nanoparticle adsorption on pore which caused wettability alteration and pore size change. Therefore, the prepared nanofluid will be utilized as an injection fluid for enhancing oil recovery and modifying fluid flow properties such as change of rock wettability and permeability in carbonate reservoirs.

본 연구에서는 탄산염암 저류층에서 활용 가능한 GPTMS((3-Glycidoxypropyl)trimethoxysilane)-SiO2 나노유체를 제조하고 주입 효과를 분석하였다. 표면개질에 따른 나노입자의 구조적 변화를 확인하기 위해 푸리에변환적외선분광(Fourier transform infrared spectroscopy, FTIR) 분석을 수행했으며, 0.5 mmol/g 이상의 GPTMS 농도에서 실리카 입자의 표면개질을 의미하는 2,950 cm-1의 C-H 신축 진동(C-H stretching vibration)을 확인하였다. 또한, 친유성 상태로 에이징된 석회석과 백운석을 대상으로 나노입자의 농도와 주입률에 따른 GPTMS-SiO2 나노유체의 코어유동 실험을 수행하였다. 나노유체 주입에 따라 최대 18.9%의 오일이 추가로 회수되었으며, 암석의 접촉각과 투과도 변화를 확인할 수 있었다. 이는 나노입자가 탄산염암 표면에 흡착됨에 따라 습윤도를 개선함과 동시에 공극에 영향을 준다는 것을 의미한다. 따라서, 제조된 나노유체는 탄산염암 저류층을 대상으로 한 석유회수증진의 주입유체로 사용될 수 있으며 습윤도, 투과도 변화와 같은 유체 유동물성 개선에 활용될 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 2020학년도 강원대학교 대학회계 학술연구조성비로 연구하였습니다. 또한, 2020년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업입니다(No.2020R1F1A1048182).

References

  1. Schlumberger, https://www.slb.com/technical-challenges/carbonates, (2022)
  2. Kim, J., and Lee, J., "Investigation of the Mechanisms and Technical Trends of Nano-EOR in Carbonate Reservoirs", J. Korean Soc. Miner. Energy Resour. Eng, 58, 580-591, (2021) https://doi.org/10.32390/ksmer.2021.58.6.580
  3. Sun, X., Zhang, Y., Chen, G., and Gai, Z., "Application of nanoparticles in enhanced oil recovery: A critical review of recent progress", Energies, 10, (2017)
  4. Roustaei, A., and Bagherzadeh, H., "Experimental investigation of SiO2 nanoparticles on enhanced oil recovery of carbonate reservoirs", J. Pet. Explor. Prod. Technol, 5, 27-33, (2015) https://doi.org/10.1007/s13202-014-0120-3
  5. Al-Anssari, S., Arif, M., Wang, S., Barifcani, A., and Iglauer, S., "Stabilising nanofluids in saline environments", J. Colloid Interface Sci, 508, 222-229, (2017). https://doi.org/10.1016/j.jcis.2017.08.043
  6. Chandio, T. A., Manan, M. A., Memon, K. R., Abbas, G., and Abbasi, G. R., "Enhanced oil recovery by hydrophilic silica nanofluid: Experimental evaluation of the impact of parameters and mechanisms on recovery potential", Energies, 14, (2021)
  7. Iijima, M., Tsukada, M., and Kamiya, H., "Effect of surface interaction of silica nanoparticles modified by silane coupling agents on viscosity of methylethylketone suspension", J. Colloid Interface Sci, 305, 315-323, (2007) https://doi.org/10.1016/j.jcis.2006.10.005
  8. Yang, X., and Liu, Z., "A kind of nanofluid consisting of surface-functionalized nanoparticles", Nanoscale Res. Lett, 5, 1324-1328, (2010) https://doi.org/10.1007/s11671-010-9646-6
  9. Ranka, M., Brown, P., and Hatton, T. A., "Responsive Stabilization of Nanoparticles for Extreme Salinity and High-Temperature Reservoir Applications", ACS Appl. Mater. Interfaces, 7, 19651-19658, (2015) https://doi.org/10.1021/acsami.5b04200
  10. Jang, H., Lee, W., and Lee, J., "Nanoparticle dispersion with surface-modified silica nanoparticles and its effect on the wettability alteration of carbonate rocks", Colloids Surfaces A Physicochem. Eng. Asp, 554, 261-271, (2018) https://doi.org/10.1016/j.colsurfa.2018.06.045
  11. Song, S. K., Kim, J. H., Hwang, K. S., and Ha, K. R., "Spectroscopic Analysis of Silica Nanoparticles Modified with Silane Coupling Agent", Korean Chem. Eng. Res, 49, 181-186, (2011) https://doi.org/10.9713/kcer.2011.49.2.181
  12. Rostamzadeh, P., Mirabedini, S. M., and Esfandeh, M., "APS-silane modification of silica nanoparticles: Effect of treatment's variables on the grafting content and colloidal stability of the nanoparticles", J. Coatings Technol. Res, 11, 651-660, (2014) https://doi.org/10.1007/s11998-014-9577-8
  13. Eslami-Farsani, R., Khosravi, H., and Fayazzadeh S., "Using 3-Glycidoxypropyltrimethoxysilane functionalized SiO2 nanoparticles to improve flexural properties of glass fibers/epoxy grid stiffened composite panels", Int. J. Chem. Mol. Nucl. Mater. Metall. Eng, 9, 1455-1458, (2015)
  14. Aziz, U., Aslam, M., Ali, H., Haq, E., Kareem, R., Qureshi, M., and Nadeem, M., "Optimization of thermal properties of ceramic coatings using fumed silica as raw material", Mater. Today Proc. 47, 1-8, (2020)