Browse > Article
http://dx.doi.org/10.7317/pk.2014.38.2.257

Spectroscopic Analysis on Michael Addition Reaction of Secondary Amino Groups on Silica Surface with 3-(Acryloyloxy)-2-hydroxypropyl Methacrylate  

Lee, Sangmi (Department of Chemical Engineering, Keimyung University)
Ha, Ki Ryong (Department of Chemical Engineering, Keimyung University)
Publication Information
Polymer(Korea) / v.38, no.2, 2014 , pp. 257-264 More about this Journal
Abstract
In this study, we modified silica nanoparticles with bis[3-(trimethoxysilyl)propyl]ethylenediamine (BTPED) silane coupling agent, which has two secondary amino groups in a molecule, to introduce amino groups on the silica surface. After modification of silica, we used acrylate group containing 3-(acryloyloxy)-2-hydroxypropyl methacrylate (AHM) to introduce polymerizable methacrylate groups by Michael addition reaction. We used Fourier transform infrared spectroscopy (FTIR), elemental analysis (EA) and liquid and solid state cross polarization magic angle spinning (CP/MAS) nuclear magnetic resonance spectroscopy (NMR) to understand the reactions between N-H groups of BTPED modified silica surface and acrylate groups of AHM monomer. We confirmed Michael addition reaction between BTPED modified silica and AHM completed in 2 hr reaction time. We also found increased methacrylate group introduction with increase of mol ratio of the acrylate group of AHM to N-H group of BTPED modified silica by increase of C=O peak area of measured FTIR spectra. These results were also supported by EA and solid state $^{13}C$ and $^{29}Si$ NMR results.
Keywords
silica; Micheal addition reaction; bis[3-(trimethoxysilyl)propyl]ethylenediamine; silanization; 3-(acryloyloxy)-2-hydroxypropyl methacrylate;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 D. P. Kang, H. Y. Park, M. S. Ahn, I. H. Myung, T. J. Lee, J. H. Choi, and H. J. Kim, Polymer(Korea), 29, 242 (2005).
2 S. M. Senani, C. Bonhomme, F. Ribot, and F. Babonneau, J. Sol-Gel Sci. Technol., 50, 152 (2009).   DOI
3 E. F. Vansant, P. van der Voort, and K. C. Vrancjen, Characterization and Chemical Modification of the Silica Surface, Elsevier, Amsterdam, 1995.
4 Y. J. Choi, C. K. Chiu, and T. J. M Luo, Nanotechnology, 22, 1 (2011).
5 R. H. Halvorson, R. L. Erickson, and C. L. Davidson, Dent. Mater., 19, 327 (2003).   DOI   ScienceOn
6 E. S. Read, K. L. Thompson, and S. P. Armes, Polym. Chem., 1, 221 (2010).   DOI
7 S. H. Yoo, H. J. Song, and C. K. Kim, Polymer(Korea), 36, 721 (2012).
8 J. Song and W. J. Vanooij, J. Adhesion Sci. Technol., 17, 2191 (2003).   DOI
9 M. Marrone, T. Montanari, G. Busca, L. Conzatti, G. Costa, M. Castellano, and A. Turturro, J. Phys. Chem. B, 108, 3563 (2004).   DOI   ScienceOn
10 J. P. Matinlinna, S. Areva, L. V. J. Lassila, and P. K. Vallittu, Surf. Interface Anal., 36, 1314 (2004).   DOI
11 Shin-Etsu Chemical Co., Ltd., Silane Coupling Agents, Tokyo, Japan, 2012.
12 N. B. Colthup, L. H. Daly, and S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy, Academic Press, Elsevier, 1990.
13 S. Ek, E. I. Iiskola, L. Niinisto, J. Vaittinen, T. T. Pakkanen, and A. Root, J. Phys. Chem. B, 108, 11454 (2004).   DOI
14 H. N. Jeon and K. R. Ha, Polymer(Korea), 36, 822 (2012).
15 D. Avci and L. J. Mathias, Polym. Bull., 54, 11 (2005).   DOI
16 Y. M. Jeon, J. G. Kim, and M. S. Gong, Korean J. Mater. Res., 16, 422 (2006).   DOI
17 L. J. Mathias, B. S. Shemper, M. Alirol, and J. F. Morizur, Macromolecules, 37, 3231 (2004).   DOI
18 Gelest, Inc., Silane Coupling Agents, Mossisville, PA, USA, 2006.