• Title/Summary/Keyword: Fourier transform infrared spectroscopy (FTIR)

Search Result 298, Processing Time 0.031 seconds

Characterization and Improvement of Dissolution Rate of Solid Dispersion of Celecoxib in PVP K30/Eudragit EPO (PVP K30/Eudragit EPO에 의한 셀레콕시브 고체분산체의 용출률 향상 및 특성)

  • Jeon, Dae Yeon;Jang, Ji Eun;Lee, Jeong Hwan;Yang, Jae Won;Park, Sang Mi;Lim, Dongkwon;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.434-440
    • /
    • 2014
  • We prepared nanoparticles containing insoluble celecoxib by the method of solid dispersions using a spray dryer to improve solubility of celecoxib. We used PVP K30 and Eudragit EPO as water-soluble carriers for the solid dispersion, and poloxamer 407 as a surfactant. Characterization of celecoxib solid dispersion was performed by scanning electron microscope (SEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). The results of SEM, DSC and XRD demonstrated that celecoxib is amorphous in solid dispersion. The dissolution rate measured in intestinal juice showed that the method of solid dispersion improved celecoxib solubility as compared with a conventional drug (Celebres$^{(R)}$). In conclusion, solid dispersion formulation prepared by a spray dryer would improve the solubility of celecoxib in oral administration.

A STUDY ON THE TENSILE STRENGTH OF REINFORCED VENEERING COMPOSITE RESINS FOR CROWN (강화형 치관용 복합레진의 인장강도에 관한 연구)

  • Ahn, Seung-Geun;Kang, Dong-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.2
    • /
    • pp.226-241
    • /
    • 2000
  • Recently a new generation of crown and bridge veneering resins containing submicron glass fillers was introduced. These ultrasmall particle hybrid composite materials distinguish themselves, compared with conventional microfill crown and bridge resins, through improved mechanical properties. It is claimed that these composites are suitable for metal free crowns and even bridges using fiber reinforcement. The purpose of this study was to evaluate the effect of thermal cycling on the tensile strength of the following veneering composites: Artglass(Heraeus Kulzer Co., Wehrheim, Germany), Estonia(Kuraray Co.. Japan), Sculpture(Jeneric Pentron Co., Wallingford, U.S.A.), and Targis(Ivoclar Co., Schaan Liechenstein). According to manufacturer's instructions, rectangular tensile test specimens measuring $1.5{\times}2.0{\times}4.5mm$ were made using a teflon mold. Whole specimens were divided into two groups. One group was dried in a desiccator at $25^{\circ}C$ for 10 days, and another group was subjected to thermal cycling($10,000{\times}$) in water($5/55^{\circ}C$). All test specimens were placed in a universal testing machine and loaded until fracture with a crosshead speed of 0.5mm/min. Weibull analysis and Tukey's test were used to analyze the data. The fracture surfaces of specimens were observed in SEM and the aliphatic C=C absorbance peak of Estenia and Targis resin was analyzed using Fourier transform infrared(FTIR) spectroscopy. Within the limitations imposed in this study, the following conclusions can be drawn: 1. Both in drying condition and thermal cycling condition, the highest tensile strength was observed in Estenia testing group(p<0.05). 2. The strength data were at to single-mode Weibull distribution, and the Weibull modulus of all veneering composite resin specimens increased after thermal cycling treatment. 3. After thermal cycling test, the highest tensile strength was observed in the Estenia group, and the lowest value was observed in the Targis group. The tensile strength values showed the significant differences between each group(p<0.05) 4. The aliphatic C=C absorbance peak of Estonia and Targis resin was decreased after light curing, and there was no distinct change after thermal cycling.

  • PDF

Characterization of Crosslinks of Maleic Anhydride-Grafted EPDM/Zinc Oxide Composite Using Dichloroacetic Acid/Toluene Cosolvent and Extraction Temperature (디클로로아세트산/톨루엔 공용매와 추출 온도를 이용한 무수말레산-그래프트 EPDM/산화 아연 복합체의 가교 특성 분석)

  • Kwon, Hyuk-Min;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.48 no.4
    • /
    • pp.288-293
    • /
    • 2013
  • Crosslink characteristics of maleic anhydride-grafted EPDM (MAH-g-EPDM)/zinc oxide composite were investigated by weight losses after dichloroacetic acid (DCA)/toluene cosolvent extraction at different temperatures and by measurement of crosslink densities. The chemical changes were analyzed using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). The weight losses by extraction at high temperature ($90^{\circ}C$) were remarkably greater than those at room temperature and those by DCA/toluene cosolvent extraction were greater than those by toluene one by more than 5 times. The crosslink densities were measured after the solvent extraction, and the second crosslink densities were higher than the first ones. The first crosslink density was lower when the extraction temperature was high, and it was much lower for the toluene extraction than for the DCA/toluene cosolvent extraction. The second crosslink density of the sample extracted with DCA/toluene cosolvent was greater than that extracted with toluene. The extracted components were depending on the extraction solvents and temperatures, for example; only strong crosslinked networks were remained when extracting with DCA/toluene cosolvent at high temperature, while only uncrosslinked polymer chains were extracted when extracting with toluene at room temperature. Therefore, crosslink characteristics of the MAH-g-EPDM/zinc oxide composite can be analyzed by comparison of the extracted components according to the extraction solvents and temperatures and by measurement of successive crosslink densities.

Characterization and Performance of MEA for Direct Methanol Fuel Cell Prepared with PFA Grafted Polystyrene Membranes via Radiation-Grafting Method (방사선 그라프트 PFA-폴리스티렌 멤브레인으로 제조한 직접 메탄올 연료전지용 MEA의 성능과 특성)

  • Kang, Se-Goo;Peck, Dong-Hyun;Kim, Sang-Kyung;Lim, Seong-Yop;Jung, Doo-Hwan;Park, Young-Chul;Shin, Jun-Hwa;Kang, Phil-Hyun;Nho, Young-Chang;Shul, Yong-Gun
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.2
    • /
    • pp.173-180
    • /
    • 2009
  • In order to develop a novel polymer electrolyte membrane for direct methanol fuel cell (DMFC), styrene monomer was graft-polymerized into poly(tetrafluoroethylene perfluoropropyl vinyl ether) (PFA) film followed by a sulfonation reaction. The graft polymerization was prepared by the $\Upsilon$-ray radiation-grafting method. Subsequently, sulfonation of the radiation-grafted film was carried out in a chlorosulfonic acid/1,2-dichloroethane (2 v/v%) solution. The chemical, physical, electrochemical and morphological properties of the radiation-grafted membranes (PFA-g-PSSA) were characterized by fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The water uptake, ionic conductivity, and methanol permeability of the PFA-g-PSSA membrane were also measured. The cell performances of MEA prepared with the PFA-g-PSSA membranes were evaluated and the cell resistances were measured by an impedance analyzer. The MEA using PFA-g-PSSA membranes showed superior performance for DMFCs in comparison with the commercial Nafion 112 membrane.

Antimicrobial Chitosan-silver Nanocomposite Film Prepared by Green Synthesis for Food Packaging (녹색합성법에 기인한 식품포장용 키토산-은나노 항균 복합필름의 개발)

  • Kyung, Gyusun;Ko, Seonghyuk
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.347-351
    • /
    • 2014
  • We studied the green synthesis and antibacterial activity of chitosan-silver (Ag) nanocomposite films for application in food packaging. Green synthesis of Ag nanoparticles (AgNPs) was achieved by a chemical reaction involving a mixture of chitosan-silver nitrate ($AgNO_3$) in an autoclave at 0.1 MPa, $121^{\circ}C$, for 15-120 s. The formation of AgNPs in chitosan was confirmed by both UV-Visible spectrophotometry and transmission electron microscopy (TEM) and the effects of chitosan-$AgNO_3$ concentration and reaction time on the synthesis of AgNPs in chitosan were examined. The resulting chitosan-Ag composite films were characterized by various analytical techniques and their antibacterial activity was evaluated based on the formation of halo zones around films, indicating inhibition of the growth of Escherichia coli. A fourier-transform infrared (FTIR) spectroscopy analysis showed that free amino groups in chitosan acted as effective reductants and AgNP stabilizers. The composite films exhibited enhanced antibacterial activity with increasing Ag content on the surface of as-prepared composite films.

Biogenic fabrication and characterization of silver nanoparticles using aqueous-ethanolic extract of lichen (Usnea longissima) and their antimicrobial activity

  • Siddiqi, Khwaja Salahuddin;Rashid, M.;Rahman, A.;Tajuddin, Tajuddin;Husen, Azamal;Rehman, Sumbul
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.328-336
    • /
    • 2018
  • Background: Biogenic fabrication of silver nanoparticles from naturally occurring biomaterials provides an alternative, eco-friendly and cost-effective means of obtaining nanoparticles. It is a favourite pursuit of all scientists and has gained popularity because it prevents the environment from pollution. Our main objective to take up this project is to fabricate silver nanoparticles from lichen, Usnea longissima and explore their properties. In the present study, we report a benign method of biosynthesis of silver nanoparticles from aqueous-ethanolic extract of Usnea longissima and their characterization by ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analyses. Silver nanoparticles thus obtained were tested for antimicrobial activity against gram positive bacteria and gram negative bacteria. Results: Formation of silver nanoparticles was confirmed by the appearance of an absorption band at 400 nm in the UV-vis spectrum of the colloidal solution containing both the nanoparticles and U. longissima extract. Poly(ethylene glycol) coated silver nanoparticles showed additional absorption peaks at 424 and 450 nm. FTIR spectrum showed the involvement of amines, usnic acids, phenols, aldehydes and ketones in the reduction of silver ions to silver nanoparticles. Morphological studies showed three types of nanoparticles with an abundance of spherical shaped silver nanoparticles of 9.40-11.23 nm. Their average hydrodynamic diameter is 437.1 nm. Results of in vitro antibacterial activity of silver nanoparticles against Staphylococcus aureus, Streptococcus mutans, Streptococcus pyrogenes, Streptococcus viridans, Corynebacterium xerosis, Corynebacterium diphtheriae (gram positive bacteria) and Escherichia coli, Klebsiella pneuomoniae and Pseudomonas aeruginosa (gram negative bacteria) showed that it was effective against tested bacterial strains. However, S. mutans, C. diphtheriae and P. aeruginosa were resistant to silver nanoparticles. Conclusion: Lichens are rarely exploited for the fabrication of silver nanoparticles. In the present work the lichen acts as reducing as well as capping agent. They can therefore, be used to synthesize metal nanoparticles and their size may be controlled by monitoring the concentration of extract and metal ions. Since they are antibacterial they may be used for the treatment of bacterial infections in man and animal. They can also be used in purification of water, in soaps and medicine. Their sustained release may be achieved by coating them with a suitable polymer. Silver nanoparticles fabricated from edible U. longissima are free from toxic chemicals and therefore they can be safely used in medicine and medical devices. These silver nanoparticles were stable for weeks therefore they can be stored for longer duration of time without decomposition.

The effect of silane treatment timing and saliva contamination on shear bond strength of resin cement to porcelain (Silane의 처리시기와 타액오염이 도재-레진 시멘트의 전단 결합강도에 미치는 영향)

  • Ro, Young-Seon;Ryu, Jae-Jun;Suh, Kyu-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.1
    • /
    • pp.61-69
    • /
    • 2009
  • Statement of problem: Porcelain veneers have become a popular treatment modality for aesthetic anterior prosthesis. Fitting porcelain veneers in the mouth usually involve a try-in appointment, which frequently results in salivary contamination of fitting surfaces. Purpose: An in vitro study was carried out to investigate the effect of silane treatment timing and saliva contamination on the resin bond strength to porcelain veneer surface. Material and methods: Cylindrical test specimens (n=360) and rectangular test specimens (n=5) were prepared for shear bond test and contact angle analysis. Whole cylindrical specimens divided into 20 groups, each of which received a different surface treatment and/or storage condition. The composite resin cement stubs were light-polymerized onto porcelain adherends. The shear bond strengths of cemented stubs were measured after dry storage and thermocycling (3,000 cycles) between 5 and $55^{\circ}C$. The silane and their reactions were chemically monitored by using Fourier Transform Infrared Spectroscopy analysis (FTIR) and contact angle analysis. One-way analysis of variance (ANOVA) and Dunnett's multiple comparison were used to analyze the data. Results: FT-IR analysis showed that salivary contamination and silane treatment timing did not affect the surface interactions of silane. Observed water contact angles were lower on the saliva contaminated porcelain surface and the addition of 37% phosphoric acid for 20 seconds on saliva contaminated porcelain increased the degree of contact angle. Silane applied to the porcelain, a few days before cementation, resulted in increasing the bond strength after thermocycling. Conclusion: Within the limitation of this study, it can be concluded that it would be better to protect porcelain prosthesis before saliva contamination with silane treatment and to clean the contaminated surface by use of phosphoric acid.

Fabrication of Silicon Quantum Dots in Si3N4 Matrix Using RF Magnetron Co-Sputtering (RF 마그네트론 코스퍼터링을 이용한 Si3N4 매트릭스 내부의 실리콘 양자점 제조연구)

  • Ha, Rin;Kim, Shin-Ho;Lee, Hyun-Ju;Park, Young-Bin;Lee, Jung-Chul;Bae, Jong-Seong;Kim, Yang-Do
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.606-610
    • /
    • 2010
  • Films consisting of a silicon quantum dot superlattice were fabricated by alternating deposition of silicon rich silicon nitride and $Si_3N_4$ layers using an rf magnetron co-sputtering system. In order to use the silicon quantum dot super lattice structure for third generation multi junction solar cell applications, it is important to control the dot size. Moreover, silicon quantum dots have to be in a regularly spaced array in the dielectric matrix material for in order to allow for effective carrier transport. In this study, therefore, we fabricated silicon quantum dot superlattice films under various conditions and investigated crystallization behavior of the silicon quantum dot super lattice structure. Fourier transform infrared spectroscopy (FTIR) spectra showed an increased intensity of the $840\;cm^{-1}$ peak with increasing annealing temperature due to the increase in the number of Si-N bonds. A more conspicuous characteristic of this process is the increased intensity of the $1100\;cm^{-1}$ peak. This peak was attributed to annealing induced reordering in the films that led to increased Si-$N_4$ bonding. X-ray photoelectron spectroscopy (XPS) analysis showed that peak position was shifted to higher bonding energy as silicon 2p bonding energy changed. This transition is related to the formation of silicon quantum dots. Transmission electron microscopy (TEM) and electron spin resonance (ESR) analysis also confirmed the formation of silicon quantum dots. This study revealed that post annealing at $1100^{\circ}C$ for at least one hour is necessary to precipitate the silicon quantum dots in the $SiN_x$ matrix.

Characteristics of SiO2/Si Quantum Dots Super Lattice Structure Prepared by Magnetron Co-Sputtering Method (마그네트론 코스퍼터링법으로 형성한 SiO2/Si 양자점 초격자 구조의 특성)

  • Park, Young-Bin;Kim, Shin-Ho;Ha, Rin;Lee, Hyun-Ju;Lee, Jung-Chul;Bae, Jong-Seong;Kim, Yang-Do
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.586-591
    • /
    • 2010
  • Solar cells have been more intensely studied as part of the effort to find alternatives to fossil fuels as power sources. The progression of the first two generations of solar cells has seen a sacrifice of higher efficiency for more economic use of materials. The use of a single junction makes both these types of cells lose power in two major ways: by the non-absorption of incident light of energy below the band gap; and by the dissipation by heat loss of light energy in excess of the band gap. Therefore, multi junction solar cells have been proposed as a solution to this problem. However, the $1^{st}$ and $2^{nd}$ generation solar cells have efficiency limits because a photon makes just one electron-hole pair. Fabrication of all-silicon tandem cells using an Si quantum dot superlattice structure (QD SLS) is one possible suggestion. In this study, an $SiO_x$ matrix system was investigated and analyzed for potential use as an all-silicon multi-junction solar cell. Si quantum dots with a super lattice structure (Si QD SLS) were prepared by alternating deposition of Si rich oxide (SRO; $SiO_x$ (x = 0.8, 1.12)) and $SiO_2$ layers using RF magnetron co-sputtering and subsequent annealing at temperatures between 800 and $1,100^{\circ}C$ under nitrogen ambient. Annealing temperatures and times affected the formation of Si QDs in the SRO film. Fourier transform infrared spectroscopy (FTIR) spectra and x-ray photoelectron spectroscopy (XPS) revealed that nanocrystalline Si QDs started to precipitate after annealing at $1,100^{\circ}C$ for one hour. Transmission electron microscopy (TEM) images clearly showed SRO/$SiO_2$ SLS and Si QDs formation in each 4, 6, and 8 nm SRO layer after annealing at $1,100^{\circ}C$ for two hours. The systematic investigation of precipitation behavior of Si QDs in $SiO_2$ matrices is presented.

Isolation of Bacillus subtilis GS-2 Producing γ-PGA from Ghungkukjang Bean Paste and Identification of γ-PGA (청국장으로부터 분리한 Poly(γ-glutamic acid)를 생산하는 균주 Bacillus subtilis GS-2의 분리 및 γ-PGA의 확인)

  • Bang, Byung-Ho;Jeong, Eun-Ja;Rhee, Moon-Soo;Kim, Yong-Min;Yi, Dong-Heui
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • ${\gamma}$-PGA(poly-${\gamma}$-glutamic acid) is an unusual anionic polypeptide that is made of D- and L-glutamic acid units connected by amide linkages between ${\alpha}$-amino and ${\gamma}$-carboxylic acid groups. ${\gamma}$-PGA has been isolated from many kinds of organisms. Many Bacillus strains produce ${\gamma}$-PGA as a capsular material of an extracellular viscous material. It is safe for eating as a viscosity element of fermented soybean products such as Chungkookjang and Natto. It is biodegradable, edible and nontoxic toward humans and the environment and its molecular weight varies from ten thousand to several hundred thousand depending on the kinds of strains used. Therefore, potential applications of ${\gamma}$-PGA and its derivatives have been of interest in the past few years in a broad range of industrial fields such as food, cosmetics, medicine, water-treatment, etc. In this study, a bacterium, Bacillus subtilis GS-2 isolated from the Korean traditional seasoning food, Chungkookjang could produce a large amount of ${\gamma}$-PGA with high productivity and had a simple nutrient requirement. Based on carbon utilization pattern and partial 16S rRNA sequence analysis, the GS-2 strain was identified as B. subtilis. The determination of purified ${\gamma}$-PGA was confirmed with thin layer chromatography (TLC), high performance liquid chromatography (HPLC), fourier transform infrared (FT-IR) spectra, and $^1H$-nuclear magnetic resonance ($^1H$-NMR) spectroscopy.