Browse > Article
http://dx.doi.org/10.9721/KJFST.2014.46.3.347

Antimicrobial Chitosan-silver Nanocomposite Film Prepared by Green Synthesis for Food Packaging  

Kyung, Gyusun (Department of Packaging, Yonsei University)
Ko, Seonghyuk (Department of Packaging, Yonsei University)
Publication Information
Korean Journal of Food Science and Technology / v.46, no.3, 2014 , pp. 347-351 More about this Journal
Abstract
We studied the green synthesis and antibacterial activity of chitosan-silver (Ag) nanocomposite films for application in food packaging. Green synthesis of Ag nanoparticles (AgNPs) was achieved by a chemical reaction involving a mixture of chitosan-silver nitrate ($AgNO_3$) in an autoclave at 0.1 MPa, $121^{\circ}C$, for 15-120 s. The formation of AgNPs in chitosan was confirmed by both UV-Visible spectrophotometry and transmission electron microscopy (TEM) and the effects of chitosan-$AgNO_3$ concentration and reaction time on the synthesis of AgNPs in chitosan were examined. The resulting chitosan-Ag composite films were characterized by various analytical techniques and their antibacterial activity was evaluated based on the formation of halo zones around films, indicating inhibition of the growth of Escherichia coli. A fourier-transform infrared (FTIR) spectroscopy analysis showed that free amino groups in chitosan acted as effective reductants and AgNP stabilizers. The composite films exhibited enhanced antibacterial activity with increasing Ag content on the surface of as-prepared composite films.
Keywords
green synthesis; chitosan; silver nanoparticle; antimicrobial activity; food packaging;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Coma V, Martial-Gros A, Garreau S, Copinet A, Salin F, Deschamps A. Edible antimicrobial films based on chitosan matrix. J. Food Sci. 67: 1162-1169 (2002)   DOI   ScienceOn
2 Wei D, Sun W, Qian W, Ye Y, Ma X. The synthesis of chitosanbased silver nanoparticles and their antibacterial activity. Carbohyd. Res. 344: 2375-2382 (2009)   DOI   ScienceOn
3 Wei D, Ye Y, Jia X, Yuan C, Qian W. Chitosan as an active support for assembly of metal nanoparticles and application of the resultant bioconjugates in catalysis. Carbohyd. Res. 345: 74-81 (2010)   DOI   ScienceOn
4 Park SC, Kang JH, Lim HA. Study on the change in physical and functional properties of paper by the addition of chitosan. J. Korea TAPPI 42: 37-46 (2010)   과학기술학회마을
5 Bordenave N, Grelier S, Coma V. Hydrophobization and antimicrobial activity of chitosan and paper-based packaging material. Biomacromolecules 11: 88-96 (2010)   DOI   ScienceOn
6 Pinto RJB, Fernandes SCM, Freire CSR, Sadocco P, Causio J, Neto CP, Trindade T. Antibacterial activity of optically transparent nanocomposite films based on chitosan or its derivatives and silver nanoparticles. Carbohyd. Res. 348: 77-83 (2012)   DOI   ScienceOn
7 Ravi Kumar MNV. A review of chitin and chitosan applications. React. Funct. Polym. 46: 1-27 (2000)   DOI   ScienceOn
8 Venkatesham M, Ayodhya D, Madhusudhan A, Babu NV, Veerabhadram G. A novel green one-step synthesis of silver nanoparticles using chitosan: catalytic activity and antimicrobial studies. Appl. Nanosci. 4: 113-119 (2014)   DOI   ScienceOn
9 Hwang IS, Cho JY, Hwang JH, Hwang BM, Choi HM, Lee JY, Lee DG. Antimicrobial effects and mechanism(s) of silver nanoparticle. Korean J. Microbiol. Biotechnol. 39: 1-8 (2011)   과학기술학회마을
10 Wei D, Qian W. Facile synthesis of Ag and Au nanoparticles utilizing chitosan as a mediator agent. Colloid. Surface. B 62: 136-142 (2007)
11 Appendini P, Hotchkiss JH. Review of antimicrobial food packaging. Innov. Food Sci. Emerg. 3: 113-126 (2002)   DOI   ScienceOn
12 Courrol LC, Silva FRO, Gomes L. A simple method to synthesize silver nanoparticles by photo-reduction. Colloid. Surface. A 305: 54-57 (2007)   DOI   ScienceOn
13 Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed.-Nanotechnol. 5: 382-386 (2009)   DOI   ScienceOn
14 Vidhu VK, Aswathy Aromal S, Philip D. Green synthesis of silver nanoparticles using Macrotyloma uniflorum. Spectrochim. Acta A 83: 392-397 (2011)   DOI   ScienceOn
15 Cho JH, Lee YW, Kim HJ, Lee JM. Study on preparation of environmental-friendly specialty paper using functional antibiotic nano-particle (I). Appl. Chem. Eng. 16: 385-390 (2005)
16 Sung SY, Sin LT, Tee TT, Bee ST, Rahmat AR, Rahman WAWA, Tan AC, Vikhraman M. Antimicrobial agents for food packaging applications. Trends Food Sci. Tech. 33: 110-123 (2013)   DOI   ScienceOn
17 Weng YM, Hotchkiss JH. Anhydrides as antimycotic agents added to polyethylene films for food packaging. Packag. Technol. Sci. 6: 123-128 (1993)   DOI   ScienceOn
18 Muriel-Galet V, Cerisuelo JP, Lopez-Carballo G, Lara M, Gavara R, Hernandez-Munoz P. Development of antimicrobial films for microbiological control of packaged salad. Int. J. Food Microbiol. 157: 195-201 (2012)   DOI   ScienceOn
19 Kim JY, Kim TY, Yoon JY. Antimicrobial activity and mechanism of silver. Appl. Chem. Eng. 20: 251-257 (2009)   과학기술학회마을
20 Cruz-Romero MC, Murphy T, Morris M, Cummins E, Kerry JP. Antimicrobial activity of chitosan, organic acids and nano-sized solubilisates for potential use in smart antimicrobially-active packaging for potential food applications. Food Control 34: 393-397 (2013)   DOI   ScienceOn
21 Cho JH, Lee YW, Kim HJ. Study on preparation of environmental-friendly specialty paper using functional antibiotic nano-particle (II). Appl. Chem. Eng. 18: 17-23 (2007)   과학기술학회마을
22 Gonzalez A, Alvarez Igarzabal CI. Soy protein-poly (latic acid) bilayer films as biodegradable material for active food packaging. Food Hydrocolloid. 33: 289-296 (2013)   DOI   ScienceOn
23 Seydim AC, Sarikus G. Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Res. Int. 39: 639-644 (2006)   DOI   ScienceOn
24 ASTM. Standard test method for determining the antimicrobial activity of immobilized antimicrobial agents under dynamic contact conditions (E 2149-10). American Society for Testing and Materials, West Conshohocken, PA, USA (2010)
25 Abdollahi M, Rezaei M, Farzi G. A novel active bionanocomposite film incorporating rosemary essential oil and nanoclay into chitosan. J. Food Eng. 111: 343-350 (2012)   DOI   ScienceOn
26 Ghaseminezhad SM, Hamedi S, Shojaosadati SA. Green synthesis of silver nanoparticles by a novel method: comparative study of their properties. Carbohyd. Polym. 89: 467-472 (2012)   DOI   ScienceOn