Browse > Article
http://dx.doi.org/10.3740/MRSK.2010.20.11.606

Fabrication of Silicon Quantum Dots in Si3N4 Matrix Using RF Magnetron Co-Sputtering  

Ha, Rin (School of Materials Science and Engineering, Pusan National University)
Kim, Shin-Ho (School of Materials Science and Engineering, Pusan National University)
Lee, Hyun-Ju (School of Materials Science and Engineering, Pusan National University)
Park, Young-Bin (School of Materials Science and Engineering, Pusan National University)
Lee, Jung-Chul (Photovoltaic Research Center, Korea Institute of Energy Research)
Bae, Jong-Seong (Busan center, Korea Science Institute)
Kim, Yang-Do (School of Materials Science and Engineering, Pusan National University)
Publication Information
Korean Journal of Materials Research / v.20, no.11, 2010 , pp. 606-610 More about this Journal
Abstract
Films consisting of a silicon quantum dot superlattice were fabricated by alternating deposition of silicon rich silicon nitride and $Si_3N_4$ layers using an rf magnetron co-sputtering system. In order to use the silicon quantum dot super lattice structure for third generation multi junction solar cell applications, it is important to control the dot size. Moreover, silicon quantum dots have to be in a regularly spaced array in the dielectric matrix material for in order to allow for effective carrier transport. In this study, therefore, we fabricated silicon quantum dot superlattice films under various conditions and investigated crystallization behavior of the silicon quantum dot super lattice structure. Fourier transform infrared spectroscopy (FTIR) spectra showed an increased intensity of the $840\;cm^{-1}$ peak with increasing annealing temperature due to the increase in the number of Si-N bonds. A more conspicuous characteristic of this process is the increased intensity of the $1100\;cm^{-1}$ peak. This peak was attributed to annealing induced reordering in the films that led to increased Si-$N_4$ bonding. X-ray photoelectron spectroscopy (XPS) analysis showed that peak position was shifted to higher bonding energy as silicon 2p bonding energy changed. This transition is related to the formation of silicon quantum dots. Transmission electron microscopy (TEM) and electron spin resonance (ESR) analysis also confirmed the formation of silicon quantum dots. This study revealed that post annealing at $1100^{\circ}C$ for at least one hour is necessary to precipitate the silicon quantum dots in the $SiN_x$ matrix.
Keywords
Si quantum dots; superlattice; silicon nitride; solar cells;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 T. M. Bruton, G. Luthardt, K. -D. Rasch, K. Roy, I. A. Dorrity, B. Garrard, L. Teale, J. Alonso, U. Ugalde, K. Declerq, J. Nijs, J. Szlufcik, A. Rauber, W. Wettling and A. Vallera, Conference Record, 14th European Photovoltaic Solar Energy Conference (June/July 1997), Barcelona p.11-16.
2 D. E. Carlson and C. R. Wronski, Top. Appl. Phys., 36, 287 (1985).
3 J. Nelson, The Physics of Solar Cells, p.289-323, Imperial College Press, London, UK (2003).
4 ARC Photovoltaics Centre of Exceleence, 2008 Annual Report, p.69-70 (2009).
5 ARC Photovoltaics Centre of Exceleence, 2009 Annual Report, p.77 (2010).
6 E.-C. Cho, M. A. Green, G. Conibeer, D. Y. Song, Y. H. Cho, G. Scardera, S. J. Huang, S. Park, X. J. Hao, Y. D. Huang and L. V. Dao, Adv. Opt. Electron. Microsc., 2007, 69578 (2007).
7 H. J. Kim, J. Moon, J. S. Cho, S. H. Park, K. H. Yoon, J. Song, B. O and J. C. Lee, Kor. J. Mater. Res., 20(6), 289 (2010) (in Korean).   DOI   ScienceOn
8 G. Conibeer, M. A. Green, R. Corkish, Y.-H. Cho, T. Fangsuwannarak, G. Scardera, E. Pink, Y. Huang, T. Puzzer, S. Huang, D. Song, C. Flynn, S. Park, X. Hao and D. Mansfield, Thin Solid Films, 516(20), 6748 (2008).   DOI   ScienceOn
9 S. W. Park, E. -C. Cho, D. Y. Song, G. Conibeer and M. A. Green, Sol. Energ. Mater. Sol. Cell., 93, 684 (2009).   DOI   ScienceOn
10 E. -C. Cho, S. W. Park, X. J. Hao, D. Y. Song, G. Conibeer, S. C. Park and M. A. Green, Nanotechnology, 19, 245201 (2008).   DOI   ScienceOn
11 T. Fangsuwannarak, G. Conibeer, G. Scardera, E. -C. Cho, E. Pink, Y. Huang and M. A. Green, in Proceedings of SPIE, 6415, 641508 (2006).   DOI
12 T. Y. Kim, N. M. Park, K. H. Kim, G. Y. Sung, Y. W. Ok, T. Y. Seong and C. J. Choi, Appl. Phys. Lett., 85(22), 5355 (2004).   DOI   ScienceOn
13 D. Y. Song, E.-C. Cho, G. Conibeer, Y. Huang and M. A. Green, Appl. Phys. Lett., 91(12), 123510 (2007).   DOI   ScienceOn
14 D. Y. Song, E. C. Cho, G. Conibeer, Y. Huang, C. Flynn and M. A. Green, J. Appl. Phys., 103(8), 083544 (2008).   DOI   ScienceOn
15 G. Scardera, T. Puzzer, E. Pink, G. Conibeer and M. A. Green, Proc. of SPIE, 6415, 641502 (2006).   DOI
16 G. Scardera, T. Puzzer, G. Conibeer and M. A. Green, J. Appl. Phys., 104(10), 104310 (2008).   DOI   ScienceOn
17 D. V. Tsu, G. Lucovsky and M. J. Mantini, Phys. Rev. B Condens. Matter., 33(10), 7069 (1986).   DOI   ScienceOn
18 G. Lucobsky, J. Yang, S. S. Chao, J. E. Tyler and W. Czubatyj, Phys. Rev. B Condens. Matter., 28(6), 3234 (1983).   DOI
19 J. Kanicki, and W. L. Warren, J. Non-Cryst. Solids, 164-166, 1055 (1993).   DOI   ScienceOn
20 W. L. Warren and P. M. Lenahan, Phys. Rev. B Condens. Matter., 42(3), 1773 (1990).   DOI   ScienceOn
21 W. L. Warren, C. H. Seager, J. Robertson, J. Kanicki and E. H. Poindexter, J. Electrochem. Soc., 143(11), 3685 (1996).   DOI
22 R. Karcher, L. Ley and R. L. Johnson, Phys. Rev. B, 30(4), 1896 (1984).   DOI
23 X. J. Hao, E. C. Cho, G. Scardera, E. Bellet-Amalric, D. Bellet, Y. S. Shen, S. Huang, Y. D. Huang, G. Conibeer and M. A. Green, Thin Solid Films, 517, 5646 (2009).   DOI   ScienceOn
24 G. Conibeer, M. Green, R. Corkish, Y. Cho, E. -C. Cho, C. -W. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer, T. Trupke, B. Richards, A. Shalav and K. -L. Lin, Thin Solid Films, 511-512, 654 (2006).   DOI   ScienceOn
25 M. A. Green, Third Generation Photovoltaics : Advanced Solar Energy Conversion, 12th ed., p.2-3, Springer, Berlin, Germany (2006).