Browse > Article
http://dx.doi.org/10.5229/JKES.2009.12.2.173

Characterization and Performance of MEA for Direct Methanol Fuel Cell Prepared with PFA Grafted Polystyrene Membranes via Radiation-Grafting Method  

Kang, Se-Goo (Fuel Cell Research Center, Korea Institute of Energy Research)
Peck, Dong-Hyun (Fuel Cell Research Center, Korea Institute of Energy Research)
Kim, Sang-Kyung (Fuel Cell Research Center, Korea Institute of Energy Research)
Lim, Seong-Yop (Fuel Cell Research Center, Korea Institute of Energy Research)
Jung, Doo-Hwan (Fuel Cell Research Center, Korea Institute of Energy Research)
Park, Young-Chul (Fuel Cell Research Center, Korea Institute of Energy Research)
Shin, Jun-Hwa (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
Kang, Phil-Hyun (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
Nho, Young-Chang (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
Shul, Yong-Gun (Department of Chemical and Biomolecular Engineering, Yonsei University)
Publication Information
Journal of the Korean Electrochemical Society / v.12, no.2, 2009 , pp. 173-180 More about this Journal
Abstract
In order to develop a novel polymer electrolyte membrane for direct methanol fuel cell (DMFC), styrene monomer was graft-polymerized into poly(tetrafluoroethylene perfluoropropyl vinyl ether) (PFA) film followed by a sulfonation reaction. The graft polymerization was prepared by the $\Upsilon$-ray radiation-grafting method. Subsequently, sulfonation of the radiation-grafted film was carried out in a chlorosulfonic acid/1,2-dichloroethane (2 v/v%) solution. The chemical, physical, electrochemical and morphological properties of the radiation-grafted membranes (PFA-g-PSSA) were characterized by fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The water uptake, ionic conductivity, and methanol permeability of the PFA-g-PSSA membrane were also measured. The cell performances of MEA prepared with the PFA-g-PSSA membranes were evaluated and the cell resistances were measured by an impedance analyzer. The MEA using PFA-g-PSSA membranes showed superior performance for DMFCs in comparison with the commercial Nafion 112 membrane.
Keywords
Direct methanol fuel cell (DMFC); Poly(tetrafluoroethylene-co-perfluoropropyl vinyl ether) (PFA); Radiation grafting; Polymer membrane;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. Kang, D. H. Peck, Y. C. Park, S. K. Kim, S. Y. Lim, D. H. Jung, and J. H. Jang, 'Performance of membrane electrode assembly for DMFC prepared by bar-coating method' J. Korean Electrochem. Soc., 11, 16 (2008)   과학기술학회마을   DOI   ScienceOn
2 M. M. Nasef, N. A. Zubir, A. F. Ismail, M. Khayet, K. Z. M. Dahlan, H. Saidi, R. Rohani, T. I. S. Ngah, and N. A. Sulaiman, 'PSSA pore-filled PVDF membranes by simultaneous electron beam irradiation: Preparation and transport characteristics of protons and methanol' J. Membr. Sci., 268, 96 (2006)   DOI   ScienceOn
3 R. Jiang, H.R. Kunz, and J.M. Fenton, 'Composite silica/Nafion membranes prepared by tetraethylothosilicate solgel reaction and solution casting for direct methanol fuel cells' J. Membr. Sci., 272, 116 (2005)   DOI   ScienceOn
4 C. A. Schiller, F. Richter, E. Glzow, and N. Wagner, 'Relaxation impedance as a model for the deactivation mechanism of fuel cells due to carbon monoxide poisoning' Phys. Chem. Chem. Phys., 3, 2113 (2001)   DOI   ScienceOn
5 R. P. O'hayre, S. W. Cha, W. Colella, and F. B. Prinz, 'Fuel cell fundamentals', 220, John Wiley & Sons, New York (2006)
6 D. H. Jung, S. Y. Cho, D. H. Peck, D. R. Shin, and J. S. Kim, 'Performance evaluation of a Nafion/silicon oxide hybrid membrane for direct methanol fuel cell' J. Power Sources, 106, 173 (2002)   DOI   ScienceOn
7 R. Zeng, Z. Pang, and H. Zhu, 'Modification of a Nafion ion exchange membrane by a plasma polymerization process' J. Electroanal. Chem., 490, 102 (2000)   DOI   ScienceOn
8 K. Miyatake, Y. Chikashige, and M. Watanabe, 'Novel sulfonated poly(arylene ether): a proton conductive polymer electrolyte designed for fuel cells' Macromolecules, 36, 9691 (2003)   DOI   ScienceOn
9 K. R. Park, P. H. Kang, and Y. C. Nho, 'Preparation of PFA-g-polystyrene sulfonic acid membranes by the-radiation grafting of styrene onto PFA films' Reactive & Functional Polymers, 65, 47 (2005)   DOI   ScienceOn
10 R. K. Nagarale, G. S. Gohil, V. K. Shahi, and R. Rangarajan, 'Organic-inorganic hybrid membrane: thermally stable cation-exchange membrane prepared by the sol-gel method' Macromolecules, 37, 10023 (2004)   DOI   ScienceOn
11 J. Chen, M. Asano, T. Yamaki, and M. Yoshida, 'Chemical and radiation crosslinked polymer electrolyte membranes prepared from radiation-grafted ETFE films for DMFC applications' J. Power Sources, 158, 69 (2006)   DOI   ScienceOn
12 J. H. Choi, P. H. Kang, Y. M. Lim, J. Y. Sohn, J. Shin, C. H. Jung, J. P. Jeun, and Y. C. Nho, 'Preparation and Characterization of Poly(styrenesulfonic acid)-grafted Fluoropolymer Membrane for Direct Methanol Fuel Cell', Korean Membrane J., 9, 52 (2007)   과학기술학회마을
13 원종웅, 전준표, 이범재, '불소고분자의 최근 개발 동향' 고분자 과학과 기술, 13, 724 (2002)   과학기술학회마을
14 V. Neburchilov, J. Martin, H. Wang, and J. Zhang, 'A review of polymer electrolyte membranes for direct methanol fuel cells' J. Power Sources, 169, 221 (2007)   DOI   ScienceOn
15 C. K. Dyer, 'Fuel cells for portable applications' J. Power Sources, 106, 31 (2002)   DOI   ScienceOn
16 X. Ren, T. E. Springer, T. A. Zawodzinski, and S. Gottesfeld, 'Methanol Transport Through Nation Membranes. Electro-osmotic Drag Effects on Potential Step Measurements' J. Electrochem. Soc., 147, 466 (2000)   DOI   ScienceOn
17 T. Kallio, K. Kisko, K. Konttyri, R. Serimaa, F. Sundholm, and G. Sundholm, 'Relationship between methanol permeability and structure of different radiation-grafted membranes' Fuel cells, 4, 328 (2004)   DOI   ScienceOn