Browse > Article
http://dx.doi.org/10.3740/MRSK.2010.20.11.586

Characteristics of SiO2/Si Quantum Dots Super Lattice Structure Prepared by Magnetron Co-Sputtering Method  

Park, Young-Bin (School of Materials Science and Engineering, Pusan National University)
Kim, Shin-Ho (School of Materials Science and Engineering, Pusan National University)
Ha, Rin (School of Materials Science and Engineering, Pusan National University)
Lee, Hyun-Ju (School of Materials Science and Engineering, Pusan National University)
Lee, Jung-Chul (Solar Cells Research Center, Korea Institute of Energy Research)
Bae, Jong-Seong (Busan center, Korea Science Institute)
Kim, Yang-Do (School of Materials Science and Engineering, Pusan National University)
Publication Information
Korean Journal of Materials Research / v.20, no.11, 2010 , pp. 586-591 More about this Journal
Abstract
Solar cells have been more intensely studied as part of the effort to find alternatives to fossil fuels as power sources. The progression of the first two generations of solar cells has seen a sacrifice of higher efficiency for more economic use of materials. The use of a single junction makes both these types of cells lose power in two major ways: by the non-absorption of incident light of energy below the band gap; and by the dissipation by heat loss of light energy in excess of the band gap. Therefore, multi junction solar cells have been proposed as a solution to this problem. However, the $1^{st}$ and $2^{nd}$ generation solar cells have efficiency limits because a photon makes just one electron-hole pair. Fabrication of all-silicon tandem cells using an Si quantum dot superlattice structure (QD SLS) is one possible suggestion. In this study, an $SiO_x$ matrix system was investigated and analyzed for potential use as an all-silicon multi-junction solar cell. Si quantum dots with a super lattice structure (Si QD SLS) were prepared by alternating deposition of Si rich oxide (SRO; $SiO_x$ (x = 0.8, 1.12)) and $SiO_2$ layers using RF magnetron co-sputtering and subsequent annealing at temperatures between 800 and $1,100^{\circ}C$ under nitrogen ambient. Annealing temperatures and times affected the formation of Si QDs in the SRO film. Fourier transform infrared spectroscopy (FTIR) spectra and x-ray photoelectron spectroscopy (XPS) revealed that nanocrystalline Si QDs started to precipitate after annealing at $1,100^{\circ}C$ for one hour. Transmission electron microscopy (TEM) images clearly showed SRO/$SiO_2$ SLS and Si QDs formation in each 4, 6, and 8 nm SRO layer after annealing at $1,100^{\circ}C$ for two hours. The systematic investigation of precipitation behavior of Si QDs in $SiO_2$ matrices is presented.
Keywords
Si quantum dots; silicon oxide; superlattice; solar cells;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 P. G. Pai, S. S. Chao, Y. Takagi and G. Lucovsky, J. Vac. Sci. Technol. A, 4, 689 (1986).   DOI
2 J. U. Schmidt and B. Schmidt, Mater. Sci. Eng. B, 101, 28 (2003).   DOI   ScienceOn
3 A. Lehmann, L. Schumann and K. Hubner, Phys. Status Solidi B, 117, 689 (1983).   DOI   ScienceOn
4 M. A. Green, Sol. Energ., 74, 181 (2003).   DOI   ScienceOn
5 R. L. Mitchell, C. E. Eitt, R. King and D. Ruby, in Proceedings of the 29th IEEE Photovoltaic Specialists Conference, (New Orleans, Louisiana, May 2002) p.1444.
6 F. Rochet, G. Dufour, H. Roulet, B. Pelloie, J. Perriere, E. Fogarassy, A. Slaoui and M. Froment, Phys. Rev. B, 37, 6468 (1988).   DOI   ScienceOn
7 F. G. Bell and L. Ley, Phys. Rev. B, 37, 8383 (1988).   DOI   ScienceOn
8 A. Lehmann, L. Schumann and K. Hubner, Phys. Status Solidi B, 121, 505 (1984).   DOI   ScienceOn
9 M. Zacharias, J. Heitmann, L. Yi, R. Scholz, M. Reiche and U. Cosele, in Proceedings of SPIE (Seattle, WA, July 2002), Vol. 4808, p.28.   DOI
10 E. Cho, S. Park, X. Hao, D. Song, G. Conibeer, S. Park and M. A. Green, Nanotechnology, 19, 245201 (2008).   DOI   ScienceOn
11 G. Hollinger and F. J. Himpsel, Appl. Phys. Lett., 44, 93 (1984).   DOI   ScienceOn
12 L. Pavesi, L. D Negro, C. Mazzoleni, G. Franzo and F. Priolo, Nature, 408, 440 (2000).   DOI   ScienceOn
13 G. Conibeera, M. Green, R. Corkish, Y. Cho, E. -C. Cho, C. -W. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer, T. Trupke, B. Richards, A. Shalav and K. -L. Lin, Thin Solid Films, 511-512, 654 (2006).   DOI   ScienceOn
14 M. A. Green, Third Generation Photovoltaics: Advanced Solar Energy Conversion, p.33-67, Springer, Berlin, Germany (2003).
15 J. Nelson, The Physics of Solar Cells, p.289, Imperial College Press, London, UK (2003).
16 Z. H. Lu, D. J. Lockwood and J. M. Baribeau, Nature, 378, 359 (1995).   DOI
17 L. Tsybeskov, K. D. Hirschman, S. P. Duttagupta, M. Zacharias, P. M. Fauchet, J. P. McCaffrey and D. J. Lockwood, Appl. Phys. Lett., 72, 43 (1998).   DOI   ScienceOn
18 G. F. Grom, D. J. Lockwood, , J. P. McCaffrey, H. J. Labbe, P. M. Fauchet, B. White, J. Diener, D. Kovalev, F. Koch and L. Tsybeskov, Nature, 407, 358 (2000).   DOI   ScienceOn
19 G. Conibeer, M. Green, E. -C. Cho, D. Konig, Y. -H. Cho, T. Fangsuwannarak, G. Scardera, E. Pink, Y. Huang, T. Puzzer, S. Huang, D. Song, C. Flynn, S. Park, X. Hao and D. Mansfield, Thin Solid Films, 516, 6748 (2008).   DOI   ScienceOn
20 M. Zacharias, J. heitmann, R. Scholz, U. Kahler, M. Schmidt and J. Blasing, Appl. Phys. Lett., 80, 661 (2002).   DOI   ScienceOn
21 Y. -R. Lee, Md. M. Alam, J. -Y. Kim, W. -G. Jung and Sung-Dai Kim, Kor. J. Mater. Res., 20(10), 550 (2010).   DOI   ScienceOn
22 I. P. Lisovkii, V. G. Litovchenko, V. B. Lozinskii, S. I. Frolov, H. Fleitner, W. Fussel and E. G. Schmidt, J. Non-Cryst. Solids, 187, 91 (1995).   DOI   ScienceOn
23 I. P. Lisovkii, V. G. Litovchenko, V. B. Lozinskii and G. I. Steblovskii, Thin Solid Films, 213, 164 (1992).   DOI   ScienceOn