• Title/Summary/Keyword: Fluid Noise

Search Result 1,065, Processing Time 0.025 seconds

Stability Analysis of a Rotating Cantilever Pipe Conveying Fluid (유체유동 회전 외팔 파이프의 안정성 해석)

  • Son, In-Soo;Yoon, Han-Ik;Kim, Dong-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.8
    • /
    • pp.701-707
    • /
    • 2007
  • In this paper the vibration system is composed of a rotating cantilever pipe conveying fluid. The equation of motion is derived by using the Lagrange's equation. Generally, the system of pipe conveying fluid becomes unstable by flutter. Therefore, the influence of the rotating angular velocity, mass ratio and the velocity of fluid flow on the stability of a cantilever pipe by the numerical method are studied. The influence of mass ratio, the velocity of fluid, the angular velocity of a cantilever pipe and the coupling of these factors on the stability of a cantilever pipe are analytically clarified. The critical fluid velocity ($u_{cr}$) is proportional to the angular velocity of the cantilever pipe. In this paper Flutter(instability) is always occurred in the second mode of the system.

A Modeling of a Variable-damping Mount Using MR Fluid (MR 유체를 이용한 가변 감쇠 마운트의 모델화)

  • Ahn, Young-Kong;Tsuchiya, Takashi;Yang, Bo-Suk;Morishita, Shin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1338-1343
    • /
    • 2000
  • This paper deals with an application of Magneto-Rheological (MR) fluid to a small size mount for precision equipment of automobiles. MR fluid is known as a class of functional fluids with controllable apparent viscosity of fluid by the applied magnetic field strength. A typical MR fluid is a suspension where pure iron particles of $1{\sim}20mm$ in diameter are dispersed in a liquid such as mineral oil or silicone oil, at the concentration of $20{\sim}40$ vol%. Electro magnetic coil is installed at the bottom of a variable-damping mount filled with MR fluid, and its performance was investigated experimentally. Furthermore, the properties of the MR Mount on experimental Study were explained analytically by mechanical model of the MR mount.

  • PDF

Coupled Vibration of Functionally Graded Cylindrical Shells Conveying Fluid (유체 유동을 고려한 경사기능재료 원통셸의 연성진동)

  • Kim, Young-Wann;Kim, Kyu-Ho;Wi, Eun-Jung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1119-1125
    • /
    • 2009
  • The coupled fluid-structure interaction problem is analyzed using the theoretical method to investigate the coupled vibration characteristics of functionally graded material(FGM) cylindrical shells conveying an incompressible, inviscid fluid. Material properties are assumed to vary continuously through the thickness according to a power law distribution in terms of the volume fraction of the constituents. The steady flow of fluid is described by the classical potential flow theory. The motion of shell represented by the first order shear deformation theory(FSDT) to account for rotary inertia and transverse shear strains. The effect of internal fluid can be taken into consideration by imposing a relation between the fluid pressure and the radial displacement of the structure at the interface. Numerical examples are presented and compared with exiting results.

Vibration Analysis of Pipes Considering Fluid Pulsation (유체맥동을 고려한 배관계의 진동해석)

  • Seo, Young-Soo;Jeong, Seok-Hyeon;Lee, Seong-Hyeon;Hong, Chin-Suk;Jeong, Weui-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.10 s.115
    • /
    • pp.1050-1056
    • /
    • 2006
  • In this paper, a new method for the stability analysis of a pipe conveying fluid which pulsates periodically is presented. The finite element model is formulated liking into consideration of the effects of the fluid pulsating in a pipe. The damping and stiffness matrices in the finite element equation vary with time due to pulsating fluid. Coupled effects of several harmonic components in the velocity of fluid to a pipe is discussed. A new unstable region appears which will not appear in the stability analysis of single pulsating frequency. A method to directly estimate the forced response of pipe is also discussed. The results presented in this paper are verified by the time domain analysis.

Finite Element Vibration Analysis of Cylindrical Shells with Internal Fluid Flow (내부 유체 유동을 포함하는 원통 셸의 유한요소 진동해석)

  • 서영수;정의봉
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.911-916
    • /
    • 2003
  • A method for the dynamic analysis of thin-walled cylindrical shell conveying steady fluid flow presents. The dynamics of thin-walled shell is based on Sanders' theory and the fluid flow in cylindrical shell is treated inviscid, incompressible fluid. A dynamic coupling conditions at fluid-structure interface is used. The equations of motion are solved by a finite element method and validated by comparing the natural frequency with other published results and Nastran. The influence of fluid velocity on the frequency response function is illustrated and discussed.

  • PDF

Vibration Analysis of Two Annular Plates Coupled with a Fluid (유체로 연성된 두 환형평판의 진동해석)

  • Jeong, Kyeong-Hoon;Kim, Jong-In
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.906-910
    • /
    • 2004
  • An analytical method for the free vibration of two annular plates coupled with water was developed by the Rayleigh-Ritz method. The two plates with unequal thickness are clamped along a rigid cylindrical vessel wall. It is assumed that the fluid bounded by a rigid cylindrical vessel is incompressible and non-viscous. The wet mode shape of the annular plates Is assumed as a combination of the dry mode shapes of the plates. The fluid motion is described by using the fluid displacement potential and determined by using the compatibility conditions along the fluid interface with the plate. Minimizing the Rayleigh quotient based on the energy conservation gives an eigenvalue problem. It is found that the theoretical results can predict well the fluid-coupled natural frequencies comparing with the finite element analysis result.

  • PDF

On the in-duct acoustical source characteristics of a simplified time-varying fluid machine (시변하는 간단한 유체기계의 덕트 내 음원 특성에 대한 해석적 연구)

  • 이정권;장승호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.517-521
    • /
    • 2001
  • Measurement techniques for the in-duct source characteristics of fluid machines can be classified into direct method and load method, according to whether the technique employs an external acoustic source or not. It has been known that the two methods yield different results and the load method used to come up with a negative source resistance, in spite of the fact that a very accurate prediction of radiated noise can be obtained by using any result. This paper is focused to the effect of time-varying nature of fluid machines on the output result. For this purpose, a simplified fluid machine consisting of a reservoir, a valve and a pipe is considered as representing a typical linear, periodic, time-varying system and the measurement techniques are simulated by utilizing the Hill equation and its steady-state forced response. In the load method, the source impedance turns out being dependent on the valve impedance at the calculation frequency and the valve and load impedances at other frequencies as well.

  • PDF

Structure-Acoustic Coupling Analysis of a Pipe Using the Beam Element (보 요소를 이용한 파이프의 구조-음향 연성해석)

  • 서영수;정의봉;정호경
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.282-287
    • /
    • 2004
  • Noise and vibrations in the pipe systems may be arisen from pumps. compressors, etc. The source mechanism is classified with the mechanical and hydraulic. Mechanical vibrations may be excited by the unbalance in rotating machinery. Hydraulic source may be generated in the turbulent flow. The vibro-acoustic behaviour of flexible, fluid-filled pipe system is a very complex and determined by two parameters: the frequency and the mass ratio of fluid and pipe wall. As the frequency increases, the mode number in the pipe increases. The mass ratio is close to one, the structure and the fluid are strongly coupled. In ease the diameter is very small to the length of pipe, the behaviour of pipe is same as a beam. The finite element formulation when the fluid and the structure are coupled is derived by using beam element. The Numerical results are compared with the package (Sysnoise) which is using the shell element.

  • PDF

Transmission Loss and Back-pressure Analysis for Inner-separated Muffler (내부 분할된 단순확장관의 투과손실 및 배압 전산해석)

  • Jeong, Weuibong;Kim, Yeon Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.687-689
    • /
    • 2014
  • This paper deals with the optimal muffler model by using acoustic analysis and CFD(computational fluid dynamics) analysis. The complicated muffler model could be better noise reduction performance. However, it could be worse affected to back-pressure performance by pressure drop in working fluid. High back-pressure is caused to low system efficiency. Therefore, it is important for the muffler design to consider the pressure drop. The muffler models are changed their partition plate position. Acoustic power transmission loss(TL) and pressure drop of working fluid are calculated by using computational analysis and used to build database for finding their trends. The optimal muffler model in user-interested frequency range could be selected by analyzing this database.

  • PDF

Design of Magneto-rheological Fluid Based Device (자기유변유체를 이용한 공학 장치의 설계)

  • Kim, Jeong-Hoon;Lee, Chong-Won;Jung, Byung-Bo;Park, Young-Jin;Cao, Guangzhong
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.544-549
    • /
    • 2001
  • The effect of power supply voltage on the performance limits in a laboratory Magneto-rheological fluid based device was identified by experiments. It suggests that the frequency range of motion for control be limited by the voltage attenuation due to the coil inductance and the maximum power supply voltage set for practical use of MRF devices. In this work, the magnetic and electrical characteristics of MRF device are investigated and a design procedure is formulated to achieve the desired performance for a given power supply.

  • PDF