• Title/Summary/Keyword: Flip-chip packaging

Search Result 194, Processing Time 0.027 seconds

A Study on Fluxless Solder Flip Chip Bonding Using Plasma & Ultrasonic Wave (플라즈마와 초음파를 이용한 무플럭스 솔데 플립칩 접합에 관한 연구)

  • 홍순민;강춘식;정재필
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.11a
    • /
    • pp.138-140
    • /
    • 2001
  • Fluxless flip chip bonding using plasma & ultrasonic wave was investigated in order to evaluate the effect of plasma & ultrasonic treatment on the bondability of the Sn-3.5wt%Ag solder bumped die to TSM-coated glass substrate. The $Ar+10%H_2plasma$ was effective in removing tin oxide on solder surface. The die shear strength of the plasma-treated Si-chip is higher than that of non-treated specimen but lower than that of specimen bonded with flux. The die shear strength with the bonding load at 25W ultrasonic power increased to 0.8N/bump for all bonding temperature but decreased above 1.0N/bump.

  • PDF

Flexible and Embedded Packaging of Thinned Silicon Chip (초 박형 실리콘 칩을 이용한 유연 패키징 기술 및 집적 회로 삽입형 패키징 기술)

  • 이태희;신규호;김용준
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.1
    • /
    • pp.29-36
    • /
    • 2004
  • A flexible packaging scheme, which includes chip packaging, has been developed using a thinned silicon chip. Mechanical characteristics of thinned silicon chips are examined by bending tests and finite element analysis. Thinned silicon chips (t<30 $\mu\textrm{m}$) are fabricated by chemical etching process to avoid possible surface damages on them. And the chips are stacked directly on $Kapton^{Kapton}$film by thermal compressive bonding. The low height difference between the thinned silicon chip and $Kapton^{Kapton}$film allows electroplating for electrical interconnection method. Because the 'Chip' is embedded in the flexible substrate, higher packaging density and wearability can be achieved by maximized usable packaging area.

  • PDF

Reliability Improvement of Cu/Low K Flip-chip Packaging Using Underfill Materials (언더필 재료를 사용하는 Cu/Low-K 플립 칩 패키지 공정에서 신뢰성 향상 연구)

  • Hong, Seok-Yoon;Jin, Se-Min;Yi, Jae-Won;Cho, Seong-Hwan;Doh, Jae-Cheon;Lee, Hai-Young
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.4
    • /
    • pp.19-25
    • /
    • 2011
  • The size reduction of the semiconductor chip and the improvement of the electrical performance have been enabled through the introduction of the Cu/Low-K process in modern electronic industries. However, Cu/Low-K has a disadvantage of the physical properties that is weaker than materials used for existing semiconductor manufacture process. It causes many problems in chip manufacturing and package processes. Especially, the delamination between the Cu layer and the low-K dielectric layer is a main defect after the temperature cycles. Since the Cu/Low-K layer is located on the top of the pad of the flip chip, the stress on the flip chip affects the Cu/Low-K layer directly. Therefore, it is needed to improve the underfill process or materials. Especially, it becomes very important to select the underfill to decrease the stress at the flip-chip and to protect the solder bump. We have solved the delamination problem in a 90 nm Cu/Low-K flip-chip package after the temperature cycle by selecting an appropriate underfill.

Copper Interconnection and Flip Chip Packaging Laboratory Activity for Microelectronics Manufacturing Engineers

  • Moon, Dae-Ho;Ha, Tae-Min;Kim, Boom-Soo;Han, Seung-Soo;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.431-432
    • /
    • 2012
  • In the era of 20 nm scaled semiconductor volume manufacturing, Microelectronics Manufacturing Engineering Education is presented in this paper. The purpose of microelectronic engineering education is to educate engineers to work in the semiconductor industry; it is therefore should be considered even before than technology development. Three Microelectronics Manufacturing Engineering related courses are introduced, and how undergraduate students acquired hands-on experience on Microelectronics fabrication and manufacturing. Conventionally employed wire bonding was recognized as not only an additional parasitic source in high-frequency mobile applications due to the increased inductance caused from the wiring loop, but also a huddle for minimizing IC packaging footprint. To alleviate the concerns, chip bumping technologies such as flip chip bumping and pillar bumping have been suggested as promising chip assembly methods to provide high-density interconnects and lower signal propagation delay [1,2]. Aluminum as metal interconnecting material over the decades in integrated circuits (ICs) manufacturing has been rapidly replaced with copper in majority IC products. A single copper metal layer with various test patterns of lines and vias and $400{\mu}m$ by $400{\mu}m$ interconnected pads are formed. Mask M1 allows metal interconnection patterns on 4" wafers with AZ1512 positive tone photoresist, and Cu/TiN/Ti layers are wet etched in two steps. We employed WPR, a thick patternable negative photoresist, manufactured by JSR Corp., which is specifically developed as dielectric material for multi- chip packaging (MCP) and package-on-package (PoP). Spin-coating at 1,000 rpm, i-line UV exposure, and 1 hour curing at $110^{\circ}C$ allows about $25{\mu}m$ thick passivation layer before performing wafer level soldering. Conventional Si3N4 passivation between Cu and WPR layer using plasma CVD can be an optional. To practice the board level flip chip assembly, individual students draw their own fan-outs of 40 rectangle pads using Eagle CAD, a free PCB artwork EDA. Individuals then transfer the test circuitry on a blank CCFL board followed by Cu etching and solder mask processes. Negative dry film resist (DFR), Accimage$^{(R)}$, manufactured by Kolon Industries, Inc., was used for solder resist for ball grid array (BGA). We demonstrated how Microelectronics Manufacturing Engineering education has been performed by presenting brief intermediate by-product from undergraduate and graduate students. Microelectronics Manufacturing Engineering, once again, is to educating engineers to actively work in the area of semiconductor manufacturing. Through one semester senior level hands-on laboratory course, participating students will have clearer understanding on microelectronics manufacturing and realized the importance of manufacturing yield in practice.

  • PDF

Experimental investigation of Scalability of DDR DRAM packages

  • Crisp, R.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.4
    • /
    • pp.73-76
    • /
    • 2010
  • A two-facet approach was used to investigate the parametric performance of functional high-speed DDR3 (Double Data Rate) DRAM (Dynamic Random Access Memory) die placed in different types of BGA (Ball Grid Array) packages: wire-bonded BGA (FBGA, Fine Ball Grid Array), flip-chip (FCBGA) and lead-bonded $microBGA^{(R)}$. In the first section, packaged live DDR3 die were tested using automatic test equipment using high-resolution shmoo plots. It was found that the best timing and voltage margin was obtained using the lead-bonded microBGA, followed by the wire-bonded FBGA with the FCBGA exhibiting the worst performance of the three types tested. In particular the flip-chip packaged devices exhibited reduced operating voltage margin. In the second part of this work a test system was designed and constructed to mimic the electrical environment of the data bus in a PC's CPU-Memory subsystem that used a single DIMM (Dual In Line Memory Module) socket in point-to-point and point-to-two-point configurations. The emulation system was used to examine signal integrity for system-level operation at speeds in excess of 6 Gb/pin/sec in order to assess the frequency extensibility of the signal-carrying path of the microBGA considered for future high-speed DRAM packaging. The analyzed signal path was driven from either end of the data bus by a GaAs laser driver capable of operation beyond 10 GHz. Eye diagrams were measured using a high speed sampling oscilloscope with a pulse generator providing a pseudo-random bit sequence stimulus for the laser drivers. The memory controller was emulated using a circuit implemented on a BGA interposer employing the laser driver while the active DRAM was modeled using the same type of laser driver mounted to the DIMM module. A custom silicon loading die was designed and fabricated and placed into the microBGA packages that were attached to an instrumented DIMM module. It was found that 6.6 Gb/sec/pin operation appears feasible in both point to point and point to two point configurations when the input capacitance is limited to 2pF.

Effect of the Tolerance Parameters of the Horn on the Vibration of the Thermosonic Transverse Bonding Flip Chip System (횡 방향 플립 칩 초음파 접합 시 혼의 공차변수가 시스템의 진동에 미치는 영향)

  • Jung, Ha-Kyu;Kwon, Won-Tae;Yoon, Byung-Ok
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.116-121
    • /
    • 2009
  • Thermosonic flip chip bonding is an important technology for the electronic packaging due to its simplicity, cost effectiveness and clean and dry process. Mechanical properties of the horn and the shank, such as the natural frequency and the amplitude, have a great effect on the bonding capability of the transverse flip chip bonding system. In this research, two kinds of study are performed. The first is the new design of the clamp and the second is the effect of tolerance parameters to the performance of the system. The clamp with a bent shape is newly designed to hold the nodal point of the flip chip. The second is the effect of the design parameters on the vibration amplitude and planarity at the end of the shank. The variation of the tolerance parameters changes the amplitude and the frequency of the vibration of the shank. They, in turn, have an effect on the quantity of the plastic deformation of the gold ball bump, which determined the quality of the flip chip bonding. The tolerance parameters that give the great effect on the amplitude of the shank are determined using Taguchi's method. Error of set-up angle, the length and diameter of horn and error of the length of the shank are determined to be the parameters that have peat effect on the amplitude of the system.

Characterization of Fluxing and Hybrid Underfills with Micro-encapsulated Catalyst for Long Pot Life

  • Eom, Yong-Sung;Son, Ji-Hye;Jang, Keon-Soo;Lee, Hak-Sun;Bae, Hyun-Cheol;Choi, Kwang-Seong;Choi, Heung-Soap
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.343-351
    • /
    • 2014
  • For the fine-pitch application of flip-chip bonding with semiconductor packaging, fluxing and hybrid underfills were developed. A micro-encapsulated catalyst was adopted to control the chemical reaction at room and processing temperatures. From the experiments with a differential scanning calorimetry and viscometer, the chemical reaction and viscosity changes were quantitatively characterized, and the optimum type and amount of micro-encapsulated catalyst were determined to obtain the best pot life from a commercial viewpoint. It is expected that fluxing and hybrid underfills will be applied to fine-pitch flip-chip bonding processes and be highly reliable.