• 제목/요약/키워드: Fixed point theorems

검색결과 436건 처리시간 0.021초

SOME ĆIRIC TYPE FIXED POINT RESULTS IN NON-ARCHIMEDEAN MODULAR METRIC SPACES

  • Hosseini, Hoda;Gordji, Majid Eshaghi
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제26권4호
    • /
    • pp.215-231
    • /
    • 2019
  • In this paper, we establish some ĆIRIC type fixed point theorems in α-complete and orbitally T-complete non-Archimedean modular metric spaces. Meanwhile, we present an illustrative example to emphasis the realized improvements. These obtained results extend and improve certain well known results in the literature.

LEFSCHETZ FIXED POINT THEORY FOR COMPACT ABSORBING CONTRACTIVE ADMISSIBLE MAPS

  • Cho, Yeol-Je;Q'Regan, Donal;Yan, Baoqiang
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제16권1호
    • /
    • pp.69-83
    • /
    • 2009
  • New Lefschetz fixed point theorems for compact absorbing contractive admissible maps between Frechet spaces are presented. Also we present new results for condensing maps with a compact attractor. The proof relies on fixed point theory in Banach spaces and viewing a Frechet space as the projective limit of a sequence of Banach spaces.

  • PDF

COMMON FIXED POINT OF GENERALIZED ASYMPTOTIC POINTWISE (QUASI-) NONEXPANSIVE MAPPINGS IN HYPERBOLIC SPACES

  • Saleh, Khairul;Fukhar-ud-din, Hafiz
    • Korean Journal of Mathematics
    • /
    • 제28권4호
    • /
    • pp.915-929
    • /
    • 2020
  • We prove a fixed point theorem for generalized asymptotic pointwise nonexpansive mapping in the setting of a hyperbolic space. A one-step iterative scheme approximating common fixed point of two generalized asymptotic pointwise (quasi-) nonexpansive mappings in this setting is provided. We obtain ∆-convergence and strong convergence theorems of the iterative scheme for two generalized asymptotic pointwise nonexpansive mappings in the same setting. Our results generalize and extend some related results in the literature.

FIXED POINT THEOREMS IN QUASI-METRIC SPACES

  • Abdelkarim Kari;Mohamed Rossafi;Jung Rye Lee
    • Nonlinear Functional Analysis and Applications
    • /
    • 제28권2호
    • /
    • pp.311-335
    • /
    • 2023
  • Fixed point theory is the center of focus for many mathematicians from last few decades. A lot of generalizations of the Banach contraction principle have been established. In this paper, we introduce the concepts of 𝜃-contraction and 𝜃-𝜑-contraction in quasi-metric spaces to study the existence of the fixed point for them.

FIXED POINT THEOREMS IN b-MENGER INNER PRODUCT SPACES

  • Rachid Oubrahim
    • Nonlinear Functional Analysis and Applications
    • /
    • 제29권2호
    • /
    • pp.487-499
    • /
    • 2024
  • The main motivation for this paper is to investigate the fixed point property for nonlinear contraction defined on b-Menger inner product spaces. First, we introduce a b-Menger inner product spaces, then the topological structure is discussed and the probabilistic Pythagorean theorem is given and established. Also we prove the existence and uniqueness of fixed point in these spaces. This result generalizes and improves many previously known results.

WORKOUT FOR α-ψ-ϕ-CONTRACTIONS IN GENERALIZED TRIPLED METRIC SPACE WITH APPLICATION

  • Ghorban Khalilzadeh Ranjbar
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제31권3호
    • /
    • pp.283-298
    • /
    • 2024
  • In this paper, by using fixed point techniques, we establish some common fixed point theorems for mappings satisfying an α-ψ-ϕ-contractive condition in generalized tripled metric space. Finally, we give an example to illustrate our main outcome.

FIXED POINTS OF ASYMPTOTICALLY REGULAR MAPPINGS

  • Kang, Shin-Min;Ronglu, Li
    • East Asian mathematical journal
    • /
    • 제14권2호
    • /
    • pp.343-356
    • /
    • 1998
  • In this paper, we prove some common fixed point theorems for compatible mappings by using asymptotically regular mappings under the contractive type of G. E. Hardy and T. D. Rogers, and also give some examples to illustrate our main theorems. Our results extend the results of M. D. Guay and K. L. Singh and others.

  • PDF