A GENERALIZATION OF FIXED POINT THEOREMS

SANGSUK YIE

§ 1. Introduction

In 1976, J. Caristi [3] obtained the following interesting result which generalizes the Banach contraction principle.

THEOREM A. Let (V, d) be a complete metric space, and f is a selfmap of V. If there exists a l. s. c. function ϕ from V into the nonnegative real numbers such that

$$d(x, fx) \le \phi(x) - \phi(fx), x \in V$$

then f has a fixed point.

F. E. Browder [1] gave a remark that if f is continuous, without assuming the lower semicontinuity of ϕ , for any $x \in V$, the iteration $f^n x$ converges to a fixed point of f.

Let (V, d) be a complete metric space. Let $\phi: V \rightarrow \mathbb{R}^+ = [0, \infty)$, and $f: V \rightarrow V$ a function not necessarily continuous such that

$$d(x, fx) \le \phi(x) - \phi(fx), x \in V.$$
 (*)

Given a sequence of functions f_i , $1 \le i \le \infty$, set

$$\prod_{i=1}^{\infty} f_i(x) = \lim_{i \to \infty} f_i f_{i-1} \cdots f_1(x)$$

if it exists, call it the countable composition of the f_i . Let f be the family of selfmaps f of V satisfying (*).

Note that f is closed under composition and that if ϕ is l.s.c., then f is closed under countable composition.

In [6], J. Siegel obtained the following generalization of Theorem A.

Received August 16, 1987.

This work was supported by Ministry of Education Grant, 1986.

THEOREM B. (Siegel [6]) Let $\mathfrak{g} \subset \mathfrak{f}$ be closed under composition. Let $x_0 \in V$.

- (a) If g is closed under countable composition, then there exists a $g \in g$ such that $\bar{x} = gx_0$ and $f\bar{x} = \bar{x}$ for each $f \in g$.
- (b) If each $f \in \mathfrak{g}$ is continuous, then there exists a sequence $\{f_i\} \subset \mathfrak{g}$ and a point $\bar{x} = \lim_{i \to \infty} f_i f_{i-1} \cdots f_1(x_0)$ such that $f \bar{x} = \bar{x}$ for each $f \in \mathfrak{g}$.

In [5], J. J. Moreau obtained a case where the iteration of a non-expansive map at a point in a Hilbert space converges to a fixed point of that map. He also applied this result to some periodic evolution problems. However, his main result is incorrect.

In this paper, we give a corrected version of Moreau's result and its possible generalizations. Consequently, we obtain another generalization of Theorem A.

Our tools in this paper are generalizations of Theorem A given by J. Siegel [6] and some related results of R.E. Bruck [2].

§ 2. Moreau's proposition

Let H be a real Hilbert space, D a subset of H, and $S: D \rightarrow D$ a nonexpansive map. The following is the main result of Moreau in [5].

Proposition [5]. If the fixed point set of S has a nonempty interior, then for every $u_0 \in D$, the sequence $S^n u_0$, $n \in \mathbb{N}$, converges to a fixed point of S.

The author used the following in [5].

Lemma [5]. Let b be a center of a closed ball with radius $\rho > 0$, contained in the fixed point set of S. Then for every $u \in D$, we have

$$||u-Su|| \leq \frac{1}{2\rho} (||b-u||^2 - ||b-Su||^2).$$

Under the hypotheses of Proposition, according to F. E. Browder's remark on Theorem A (see p. 1), the lemma guarantees only that for every $u_0 \in D$, the sequence $S^n u_0$ converges to a point of H. Further, if the limit belongs to D, e.g., D is closed, then the limit is fixed under S.

The following is a counterexample to the proposition:

Let
$$H = \mathbb{R}$$
, $D = (-2, -1) \cup \left\{ \frac{1}{n} \right\}_{n \in \mathbb{N}}$, and

$$Sx = \begin{cases} x & \text{if } x \in (-2, -1) \\ \frac{1}{n+1} & \text{if } x = \frac{1}{n} \end{cases}$$

Consequently, the following is a correct version of Moreau's proposition:

Theorem 2.1. Let H be a real Hilbert space, D a closed suset of H, and $S: D \rightarrow D$ a nonexpansive. If the fixed point set of S has a nonempty interior, then for every $u_0 \in D$, the sequence $S^n u_0$, $n \in \mathbb{N}$, converges to a point of S.

§ 3. Generalizations of Moreau's proposition

In this section, we consider possible generalizations of Theorem 2.1. Let $G: V \rightarrow \mathbb{R}^+$ be a continuous function, $h: \mathbb{R}^+ \rightarrow \mathbb{R}^+$ an increasing function and F = hG, Let f be the family of self-maps f of V satisfying

$$d(x, fx) \le F(x) - F(fx), \quad x \in V. \tag{1}$$

Then the following holds:

LEMMA 3.1. f is closed under composition.

Proof. Let f_1 and f_2 be in f. Then

$$d(x, f_1f_2x) \leq d(x, f_1x) + d(f_1x, f_1f_2x)$$

$$\leq F(x) - F(f_1x) + F(f_1x) - F(f_1f_2x)$$

$$= F(x) - F(f_1f_2x).$$

LEMMA 3.2. Let $\{x_i\}$ be a sequence in V such that

$$d(x_i, x_{i+1}) \le F(x_i) - F(x_{i+1})$$
 for each i.

Then $\lim x_i = \bar{x}$ exists and

$$d(x_i, \bar{x}) \leq F(x_i) - F(\bar{x})$$
 for each i.

Proof. Since $\{F(x_i)\}$ is decreasing and bounded from below and $d(x_i, x_j) \le F(x_i) - F(x_j)$ for $i \le j$, $\{x_i\}$ is a Cauchy sequence in V, and hence, converges to some $\bar{x} = \lim_{i \to \infty} x_i$ in V. On the other hand,

$$\begin{aligned} d\left(x_{i}, \bar{x}\right) &= \lim_{j \to \infty} d\left(x_{i}, x_{j}\right) \\ &\leq F(x_{i}) - \lim_{j \to \infty} F(x_{j}). \end{aligned}$$

Since

$$hG(x_i) = F(x_i) \ge F(x_{i+1}) = hG(x_{i+1})$$

and h is increasing, we have $G(x_i) \ge G(x_{i+1})$. Since G is continuous and $x_i \to \bar{x}$, we must have $Gx_i \perp G\bar{x}$. Therefore, we have

$$F(x_i) = hG(x_i) \ge hG(\bar{x}) = F(\bar{x}),$$

and hence,

$$\lim_{j\to\infty} F(x_j) \geq F(\bar{x}).$$

Consequently,

$$d(x_i, \bar{x}) \leq F(x_i) - \lim_{j \to \infty} F(x_j)$$

$$\leq f(x_i) - F(\bar{x}).$$

LEMMA 3.3. f is closed under countable composition.

Proof. Given a sequence $\{f_i\}$ in f and for each $x \in V$, the sequence $\{x_i\}$ given by $f_i f_{i-1} \cdots f_1 x$ satisfies the conditions of Lemma 3.2.

Hence, from Theorem B (Siegel) we obtain the following:

THEOREM 3.1. Let f be the family of selfmaps of a complete metric space V satisfying (1), where either (i) F is l. s. c. or (ii) F=hG, $h: \mathbb{R}^+ \to \mathbb{R}^+$ an increasing function, and $G: V \to \mathbb{R}^+$ a continuous function. Then for any $x_0 \in V$,

- (a) there exists a $g \in f$ such that $\bar{x} = gx_0$ and $f\bar{x} = \bar{x}$ for each $f \in f$.
- (b) If $\mathfrak{g} \subset \mathfrak{f}$ is closed under composition and each $f \in \mathfrak{g}$ is continuous, then there exist a sequence $\{f_i\} \subset \mathfrak{g}$ and a point $\bar{x} = \lim_{i \to \infty} f_i f_{i-1} \cdots f_1 x_0$ such that $f\bar{x} = \bar{x}$ for each $f \in \mathfrak{g}$.

The following is a generalization of Theorem A.

COROLLARY 3.1. Let f be a selfmap of a complete metric space V satisfying (1), where either (i) F is l. s. c. or (ii) F=hG as in Theorem 3.1. Then

- (a) f has a fixed point in V,
- (b) If f is continuous, then for any $x_0 \in V$, $\{f^n x_0\}$ converges to a fixed point of f.

Corollary 3. 1 generalizes Theorem 2. 1.

Another line of generalizations of Moreau's proposition can be obtained by using R. E. Bruck's result [2]. For a metric space (V, d), Buck [2] observed that a special role is played by selfmaps f of V which satisfy, for some $b \in V$ and an increasing function $h: \mathbb{R}^+ \to \mathbb{R}^+$,

$$d(x,fx) \le h(d(x,b)) - h(d(fx,b)) \tag{2}$$

for all $x \in V$. Their importance arises from an observation made by Golub et al. $\lceil 4 \rceil$.

A sequence $\{g_n\}$ of selfmaps of V is said to be iteration normal if for all $x_0 \in V$, the iterates $x_n = g_n x_{n-1}$ $(n \ge 1)$ converges and the same is true for every shift $\{g_k, g_{k+1}, \cdots\}$ of the original sequence.

The following is due to Bruck:

THEOREM 3.2. (Bruck [2]) Let (V, d) be a complete metric space. If $\{g_n\}$ is iteration normal, each g_n is nonexpansive, and $\{f_n\}$ is a sequence of selfmaps of V which satisfy (2), for some increasing function $h: \mathbb{R}^+ \to \mathbb{R}^+$ and some $b \in \cap \operatorname{Fix}(g_n)$. Then,

- (a) $\{f_n\}$ has a common fixed point, and
- (b) the sequence $\{g_1, f_1, g_2, f_2, ...\}$ obtained by "shuffling" $\{g_n\}$ with $\{f_n\}$ is also iteration normal.

Note that (a) follows from Theorem 3.1 (a).

Bruck noted that if we take each $g_n = I_V$, (b) asserts that $\{f_n\}$ can be iterated in any order, with the resulting sequence converging.

From this observation, we have the following:

THEOREM 3.3. Let H be a real Hilbert space, D a closed subset of H, and $\{f_n\}$ a sequence of nonexpansive selfmaps of D. If the common fixed point set $\{f_n\}$ has a nonempty interior, then for every $u_0 \in D$, the sequence $\{u_n\}$ given by $u_n = f_n u_{n-1}$, $n \ge 1$, converges.

Proof. By putting V=D, $g_n=I_D$, b belongs to the interior of the common fixed point set of $\{f_n\}$, and $h(r)=r^2/2\rho$, $r\geq 0$, the conclusion follows from Theorem 3.2 (b).

Note that Theorem 3.3 generalizes Theorem 2.1. In fact, by putting $f_n = f^n$, $\{f^n u_0\}$ converges to a fixed point of f.

REMARK. In [2], it was noted that we do not identify the limit of $\{u_n\}$ in terms of the (common) fixed point sets of $\{f_n\}$. Now we give an example in which the limit of the sequence $\{u_n\}$ is not a common fixed point of $\{f_n\}$ but a fixed point of some f_n .

Let D = [0, 1] be a closed subset of R, and $\{f_n\}$ a sequence of nonexpansive selfmaps of D defined by

$$f_1(x) = \begin{cases} x & \text{if } x \in \left[0, \frac{1}{2}\right] \\ \frac{1}{2}x + \frac{1}{4} & \text{if } x \in \left[\frac{1}{2}, 1\right], \end{cases}$$

and

$$f_n(x) = x, x \in [0, 1]$$
 for $n \ge 2$.

Then $\bigcap_{i=1}^{\infty} \operatorname{Fix}(f_n) = \left[0, \frac{1}{2}\right]$, and all the hypothese of Theorem 3.3 are satisfied. Moreover, for any $u_0 \in \left[\frac{1}{2}, 1\right]$, the sequence $\{u_n\}$ given by $u_n = f_n u_{n-1}$ $(n \ge 1)$ converges to $\bar{u} = \frac{1}{2} u_0 + \frac{1}{4} \in D$. However, \bar{u} is not a fixed point of f_1 . Therefore, the limit of the sequence $\{u_n\}$ is not contained in the common fixed point set of $\{f_n\}$.

References

- F.E. Browder, On a theorem of Caristi and Kirk, Proceeding Seminar on Fixed Point Theory and Its Applications, Dalhausie University, June 1975, Academic Press, 23-27.
- 2. R.E. Bruck, Random products of contractions in metric and Banach spaces, J. Math. Anal. & Appl., 88(1982), 319-332.
- 3. J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc., 215(1976), 241-251.
- L.G. Gubin, B.T. Polyak and E.V. Raik, The method of projections for finding the common point of convex sets, Computational Math. Phys., 7 (1967), 1-24.
- J.J. Moreau, Un cas de convergence des itérées d'une contraction d'un espace hilbertien, Compte Rendus Acad. Sci. Paris, 286(1978), 143-144.
- 6. J. Siegel, A new proof of Caristi's fixed point theorem, Proc. Amer. Math. Soc., 66(1977), 54-56.

Soong Sil University Seoul 151, Korea