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LEFSCHETZ FIXED POINT THEORY FOR COMPACT
ABSORBING CONTRACTIVE ADMISSIBLE MAPS

YEOL JE CHO?, DONAL O’REGAN® AND BAOQIANG YAN®

ABSTRACT. New Lefschetz fixed point theorems for compact absorbing contractive
admissible maps between Fréchet spaces are presented. Also we present new results
for condensing maps with a compact attractor. The proof relies on fixed point theory
in Banach spaces and viewing a Fréchet space as the projective limit of a sequence
of Banach spaces.

1. INTRODUCTION

This paper presents new Lefschetz fixed point theorems for compact absorbing
contractive maps between Fréchet spaces. In addition we will discuss condensing
maps with a compact attractor. The proofs rely on fixed point theory in Banach
spaces and viewing a Fréchet space as the projective limit of a sequence of Banach
spaces. In the literature [1, 2], one usually assumes the map F is defined on a subset
X of a Fréchet space E and its restriction (again called F') is well defined on X,
(see Section 2). In general, of course, for Volterra operators, the restriction is always
defined on X, and in most applications it is in fact defined on X,, and usually even
on E, (see Section 2). In this paper, we make use of the fact that the restriction is
well defined on X,, and we only assume it admits an extension (satisfying certain
properties) on X,. We also show in Section 2 and Section 3 how easily one can
extend fixed point theory in Banach spaces to fixed point theory in Fréchet spaces.

The existence in Section 2 and Section 3 will be based on some Lefschetz type
fixed point theory. Let X, Y and T be Hausdorff topological spaces. A continuous
single valued map p: [ — X is called a Vietoris map (written p : I' = X)) if the
following two conditions are satisfied:
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(i) for each z € X, the set p~!(z) is acyclic;
(ii) p is a proper map, i.e., for every compact A C X, we have that p~1(4) is
compact. ‘

Let D(X,Y) be the set of all pairs X £ 1 % Y, where p is a Vietoris map and
q is continuous. We will denote every such diagram by (p,q). Given two diagrams

(p,q) and (¢',q'), where X Zpe Y, we write (p,q) ~ (p,q') if there are maps
f:T'=TI" and ¢g:I" — T such that

dof=q Dof=p, qog=4q, pog=7p.

The equivalence class of a diagram (p,q) € D(X,Y) with respect to ~ is denoted
by

p={XETLY}: XY

or ¢ = [(p,q)] and is called a morphism from X to Y. Let M(X,Y) be the
set of all such morphisms. For any ¢ € M(X,Y), a set ¢(z) = ¢gp~! (z), where
¢ = [(p,q)], is called an image of z under a morphism ¢.

Consider vector spaces over a field K. Let E be a vector spaceand f: £ — FE
an endomorphism. Now, let N(f) = {z € E: f®(z) = 0 for some n}, where
f is the n'* iterate of f, and let E = E\N(f). Since f(N(f)) C N(f), we
have the induced endomorphism f: E — E. We call f admissible if dim E < oo;
for such f, we define the generalized trace Tr(f) of f by putting Tr(f) = tr( h,
where tr stands for the ordinary trace.

Let f = {f;} : E — E be an endomorphism of degree zero of a graded vector

space E = {E;}. We call f a Leray endomorphism if
(i) all f; are admissible;

(ii) almost all E, are trivial.

For such f, we define the generalized Lefschetz number A(f) by
A(f) =) (~1)ITr (f)-
q

Let H be the Cech homology functor with compact carriers and coefficients in
the field of rational numbers K from the category of Hausdorff topological spaces
and continuous maps to the category of graded vector spaces and linear maps of
degree zero. Thus H(X) = {H,(X)} is a graded vector space, H,(X) being the
¢-dimensional Cech homology group with compact carriers of X. For a continuous
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map f: X — X, H(f) is theinduced linear map f, = {fiq} where fiq: Ho(X) —
Hy(X).
The Cech homology functor can be extended to a category of morphisms (see [5,

p. 364]) and also note the homology functor H extends over this category, i.e., for
a morphism

p={XETLY}: XY,
we define the induced map

H(¢) = ¢ : H(X) — H(Y)
by putting ¢, = g« op; .

Let ¢ : X — Y be a multivalued map (note that, for each z € X, we assume
#(z) is a nonempty subset of Y). A pair (p,q) of single valued continuous maps
of the foorm X & I' & Y is called a selected pair of ¢ (written (p,q) C ¢) if the
following two conditions hold:

(i) p is a Vietoris map;
(ii) ¢(p~Y(z)) C ¢(x) for any z € X.

Definition 1.1. A upper semicontinuous map ¢ : X — Y is said to be admissible
(and we write ¢ € Ad(X,Y)) provided there exists a selected pair (p,q) of ¢.

Definition 1.2. A map ¢ € Ad(X, X) is said to be a Lefschetz map if, for each
selected pair (p,q) C ¢, the linear map ¢, p;} : H(X) — H(X) (the existence of
p; ! follows from the Vietoris Theorem) is a Leray endomorphism.

If $: X — X is a Lefschetz map, we define the Lefschetz set A (¢) (or Ax (4))
by

A(¢) = {Agp;"): (p,g) C ¢}.

Definition 1.3. A multivalued map ¢ : X — 2% is called a compact absorbing

contraction if there exists an open set U C X such that ¢(U) is a compact subset

of U and X C UX,¢¢(U), where 2% denotes the family of nonempty subsets of
X.

Definition 1.4. We say ¢ € CAC(X,X) if ¢ € Ad(X,X) and is a compact
absorbing contraction.

Definition 1.5. A Hausdorff topological space X is said to be a Lefschetz space

provided every ¢ € CAC(X,X) is a Lefschetz map and A(¢) # {0} implies ¢ has
a fixed point.
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Example 1.1. If X € ANR, then X is a Lefschetz space (see [4, p. 208]).

Let (X,d) be a metric space and S be a nonempty subset of X. For any z € X
let d(z, S) = infyecs d(z,y). Also, diam § = sup{d(z,y) : z,y € S}. Welet B(z,r)
denote the open ball in X centered at z of radius r and by B(S,r) we denote
Uzes B(z, 7). For two nonempty subsets S; and Sz of X, we define the generalized
Hausdorff distance H to be

H(S},SQ) = inf{e >0: §5;C 8(52,6), Se C B(S],G)}.

Now, suppose G : S — 2%X; here 2X denotes the family of nonempty subsets
of X. Then G is said to be hemicompact if each sequence {Z,}neny in S has a
convergent subsequence whenever d(z,,G (z,)) — 0 as n — oo.

In Section 3, we discuss condensing single valued maps. Now, with this in mind,
let H be the singular homology functor (with coefficients in the field K) from
the category of topological spaces and continuous maps to the category of graded
vector spaces and linear maps of degree zero. Thus H(X) = {H,(X)} is a graded
vector space, H,(X) being the g-dimensional singular homology group of X. For
a continuous map f : X — Y, H(f) is the induced linear map f. = {f;}, where
fq Ho(X) — Ho(Y).

Definition 1.6. A continuous map f: X — X is called a Lefschetz map provided
fx: H(X) — H(X) is a Leray endomorphism. For such f, we define the Lefschetz
number A(f) (or Ax(f)) of f by putting A(f) = A(fy).

Let X a a topological space and f: X — X be a continuous map with z € X.
Then the set

is called the orbit of z under f.

Definition 1.7. We say that a compact set A is an attractor for f: X — X if,
for every z € X, we have

O(z)N A+ 0,
where O(x) denotes the closure of O(z) in X.

Let (X,d) be a metric space and x be the bounded subsets of X. The Kura- -
towski measure of noncompactness is the map a : Qx — [0,00] defined by (where
AeQ X)

a(A)=inf{r>0: AC U, A; and diam (4;) <7}
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Let S be a nonempty subset of X. Then the single valued map G : S — X is
(i) k-set contractive (here k > 0) if G(S) is bounded and a(G(W)) < ka(W)
for all bounded sets W of S,
(ii) condensing if G(S) is bounded, G is 1-set contractive and o(G(W)) <
a(W) for all bounded sets W of S with a(W) # 0;
(ili) hemicompact if each sequence {x,}nen in S has a convergent subsequence

whenever d(z,,G (z,)) — 0 as n — co.

We now recall a result from the literature [1].

Theorem 1.1. Let (Y,d) be a metric space, D be a nonempty complete subset of
Y and G: D — Y a condensing map. Then G is hemicompact.

Definition 1.8. A space X is said to be a CA Lefschetz space provided any
continuous condensing map f : X — X with a compact attractor is a Lefschetz

map and Ax(f) # 0 implies f has a fixed point.
The following result is due to Nussbaum [3].

Example 1.2. If X is an open subset of a Banach space, then X is a CA Lefschetz
space.

We say a closed bounded subset X of a Banach space E is a special ANR if
there exists an open U C F and a continuous map 7 : U — X with X C U,
r(z) =z for every z € X and, for every A C U, we have a(r(4)) < a(A).

Definition 1.9. A space X is said to be a special Lefschetz space provided any
continuous condensing map f: X — X is a Lefschetz map and Ax(f) # 0 implies
f has a fixed point.

The following result is due to Gorniewicz [3].
Example 1.3. If X is a special ANR, then X is a special Lefschetz space.

Now, let I be a directed set with order < and {F4}acs be a family of locally
convex spaces. For each o € I, 8 € I for which o < 3, let mo3: Eg — E4 be a
continuous map. Then the set

{x: (zo) € H Eo: 2o =map(zs), Vo, BEI a< B}

acl

is a closed subset of [],.; Eo and is called the projective limit of {Ey}aecs and
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is denoted by lim. E, (or lim_ {E,, 743} or the generalized intersection ({7, pp.
439]) Naer Ea-)

2. FIXED PoOINT THEORY IN FRECHET SPACES

Let E = (E,{|- |n}nen) be a Fréchet space with the topology generated by a
family of seminorms {|- |, : n € N}, where N = {1,2,---}. We assume that the
family of seminorms satisfies

(2.1) lzh <|z|2 <|z|s < -+ forevery z € E.

A subset X of F is bounded if, for every n € N, there exists r, > 0 such that
|zl <7, forall z € X. Forany r >0 and = € E, we denote B(z,r) ={y € F:
lz—yl, <r, Vn € N}. To E, we associate a sequence of Banach spaces {(E,,||»)}
described as follows. For every n € N, we consider the equivalence relation ~,
defined by

(2.2) x~py ifand only if |z —y|, =0.

We denote by E" = (E [/ ~y,| - |n) the quotient space and by (E,,|-|,) the com-
pletion of E™ with respect to |- |, (the norm on E" induced by |- |, and its
extension to E, are still denoted by |- |,). This construction defines a continuous
map u, : E — E,. Now, since (2.1) is satisfied, the seminorm |- |, induces a
seminorm on E,, for every m > n (again this seminorm is denoted by |-|,). Also,
(2.2) defines an equivalence relation on E,, from which we obtain a continuous
map pnm : En — E, since E,, /~, can be regarded as a subset of E,. Now,
bnm bk = Mng if m <m < k and p, = pnm pm if n < m. We now assume the
following condition holds:

(2.3) { for each n € N, there exists a Banach space (Enp,]|-|n)

and an isomorphism (between normed spaces) jn : E, — Ej.

Remark 2.1. (1) For convenience, the norm on E, is denoted by |- |-

(2) In our applications, E,, = E" for each n € N.

(3) Note that, if x € E, (or E"), then x € E. However, if z € E,, then z is
not necessaily in E and, in fact, E, is easier to use in applications (even though
E, is isomorphic to E,). For example, if E = C|0,00), then E™ consists of the
class of functions in E which coincide on the interval [0,n] and E, = C[0,n].
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Finally, we assume that

(2.4) { E.l 2 By 2—1 and, for each n € N,

n tnnt1 Jrg1 Tln < |Zlng1, VT € Enya
(where we use the notation from {7], i.e., decreasing in the generalized sense). Let
lim_ E, (or N{° E,, where N{° is the generalized intersection [7]) denote the pro-
jective limit of {E,}nen (note mpm = jn tinmim' @ Em — Ep for m > n) and
note lim. E, = F, so, for convenience, we write F =lim. E,.

For each X C E and each n € N, we set X, = jn pn(X), and we let X,
int X,, and 0X,, denote, respectively, the closure, the interior and the boundary of

Xn with respect to |- |, in E,. Also, the pseudo-interior of X is defined by
pseudo — int (X) ={z € X : j, pun(z) € X,,\ 80X, for every n € N}.

The set X is pseudo-open if X = pseudo — int(X). For r > 0 and = € E,, we
denote Bp(z,7) ={y € E,: v —y|» <7}

Let M C E and consider the map F : M — 2%, Assume that, for each n € N
and x € M, jnu, F(z) is closed. Let n € N and M, = j, pn(M). Since we only
consider Volterra type operators, we assume

(2.5) if z,y€ E with |z —y|, =0 then Hp(Fz,Fy) =0,

where H, denotes the appropriate generalized Hausdorff distance (alternatively,
we could assume that, for all n € N and z,y € M, if jonpn® = jnpny, then
Jn pin F T = jp pn F'y and, of course, here we do not need to assume that jp un F (z)
is closed for each n € N and z € M). Now, (2.5) guarantees that we can define (a
well defined) F,, on M, as follows:

For any y € M, there exists x € M with y = j, un(z) and we let
Foy=jnpn Fx
(we could of course call it Fy since it is clear in the situation we use it); note
that F, : M, — C(E,) and, if there exists z € M with y = j, un(z), then
JntinFz = jopn Fz from (2.5) (where C(E,) denotes the family of nonempty
closed subsets of E,). In this paper, we assume that Fj, will be defined on M, ie.,

we assume that the F), described above admits an extension (again, we call it F3,)

F, : M, — 25 (we will assume certain properties on the extension).

Now, we present some Lefschetz type theorems in Fréchet spaces. Let E and
E,, be as described above.
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Definition 2.1. Aset A C F issaid to be PRLS if, for each n € N, A, = jn tin (A)
is a Lefschetz space.

Definition 2.2. A set A C E is said to be CPRLS if, for each n € N, A4, is a
Lefschetz space. '

Example 2.1. Let A be pseudo-open. Then A is a PRLS.
To see this, fix n € N. We now show

Ay, 18 a'open subset of E,.

First, notice that A, C 3;\ 0A,, . In fact, if y € A,, then there exists z € A with
y = jnpin(z) and this together with A = pseudo—int A yields jopn(x) € A, \ 04y,
ie., y € 4, \ 04,. In addition, notice that

since int A, N 8A, = 0. Consequently, we have
A, CA,\0A, =intA,, so A,=intA,.

As a result, A, is open in E,. Thus A, is a Lefschetz space (see Example 1.1), so
A is a PRLS.

Theorem 2.1. Let E and E, be as described above, C C E 4s an PRLS and
F:C —2E. Also, assume that, for each n € N and x € C, j,pn F (z) is closed
and F, : Cp, — 28 as described above is a closed map with x ¢ Fy(x) in E, for
any x € 8C,. Suppose that the following conditions are satisfied:

(2.6) for eﬁh n € N, F, € CAC(Cp,Cp) and
) F, : C, — 2B is hemicompact;
(2.7) for each n € N, A, (F,) # {0};

then jk pinin (y) € Ce for ke {1,---,n—1}.
Then F has a fized point in E.

28) {foreach ne{2,3,---} if yeC, solves ye F,y in E,

Proof. For each n € N, there exists y, € C, with y, € F,y, in E,. Let’s look at
{yn}nen- Notice that y; € Cy and ji p1xdy " (yx) € Cy for k € N\{1} from (2.8).
Note that f1 1,0 J;  (¥n) € F1 (1 #1057 (yn)) in Ex; to see note, for each n € N
fixed, there exists = € E with y, = j, tn (T), S0 jn tin (T) € Fr (Yn) = Jn tin F(z)
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on E,, soon Ey, we have

31 1 J  (Un) = 1 a5 e (2) € 1 p1in dn ' Gn i F(2)
= J1 pan pn F(z) = j1 1 F(z) = F1(j1 1 (z))
= F1(j1 piam iy Y Gin pin (2)) = Fy (G2 pr1m 35 H(m))-

Now, (2.6) guarantees that there exists is a subsequence NJ of N and z; € C;
with 71 ,ul,nj,jl (yn) — 21 in Ey as n — oo in N{ and z1 € F1 2 since ] is a
closed map. Note that z; € Cy since z ¢ Fi(z) in E; forany z € 9Cy. Let Ny =
N\ {1}. Now, jo p2n it (yn) € Co for each n € Ny together with (2.6) guarantees
that there exists subsequence N3 of N and z; € Cy with jo pan i (yn) — 22
in By as n — oo in NJ and z3 € Fyzs. Also, 2o € C2. Note that, from (2.4)
and the uniqueness of limits, j; 112 j2_1 20 = z1 in Ep since NJ C N; (note that
I35 () = 11237 G2 2 i (yn) for each n € Ny). Let Np = N3\ {2},
Proceed inductively to obtain subsequences of integers

and 2z, € Cy with jk,uk,nj;l (yn) = 2 in E as n — oo in Ny and zp € Fy 2.
Also, z € C. Note that jg prr+1 j,;:l 2p41 = 2 in Ey for ke {1,2,---}. Also,
let N, = NI\ {k}.

Fix k€ N. Now, z; € Fy z; in Ej. Note as well that

. .1 ) —1 . -1
2k = Jk Bk k+1 Jgy1 Rk+1 = Jk Hhk+1 Dg 1 To+1 Hk+1,k+2 T 10 k42
. =1 . .1
= Jk Mk k+2 Jpyo Zk+2 = ' = Jk Bkom Im #m = Tk,m Zm

for every m > k. We can do this for each k € N. Asaresult, y = (z) € lim E,, =
E and also note z; € C), for each k& € N. Thus, for each k € N, we have

Jeb (Y) =2k € Frzi = jrpe F'y in E,
so y€ Fyin E. ]

Remark 2.2. Of course, one could remove z ¢ Fy(z) in E, for any z € 0C, for
each n € N if C is a closed subset of E. The proof follows as in Theorem 2.1 except
in this case z; € Cy (but not necessarily in Cy). Also, from y = (z) € lim E, =
E and 7y (ym) — 2 in By as m — oo, we can conclude that y € C =C (note
g € C if and only if, for every k € N, there exists (Tk.m) € C, Tkm = Ton (Tnm)
for n > k with zg,m — Jrpr(¢) in Ex as m — o0). Thus z, = jiuk (y) € Ck
and so jr pk (y) € jupr F (y) in Ex as before. Note in fact we can remove the
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assumption that C is a closed subset of E if we assume F :Y — 2E with CCY
and C, CY, foreach n€ N.

Remark 2.3. If we replace F), : C,, — 2F» is hemicompact in (2.6) with F, : C), —
2Fn is hemicompact, then one can remove z ¢ F,(z) in E, for any z € 8C, and
F, : C, — 2Fn is a closed map for each n € N in the statement of Theorem 2.1
since if, for each n € N, F, : C,, — 2E» is hemicompact, then we automatically
have that z; € (.

Essentially, the same reasoning as in Theorem 2.1 (with Remark 2.2) yields the
following result.

Theorem 2.2. Let E and E, be as described above, C C E be an CPRLS and
F:C — 2E. Also, assume that C is a closed subset of E and, for each n € N
and x € C, j, pn F (x) is closed and also for each n € N that Fy : C, — 2Fn s
as described above. Suppose that the following conditions are satisfied:

(2.9) for each n€ N, F, € CAC(C,,C,) is hemicompact;

(2.10) for each n € N, Ag-(Fn) # {0};

(2.11) for each n € {2,3,-~~Lif y€C, solves ye€ F,y in E,
' then jipkndn' (y) € Cx for k€ {l,---,n—1}

Then F has a fized point in E.

Remark 2.4. Note that we can remove the assumption in Theorem 2.2 that C is
a closed subset of E if we assume F:Y — 2F with C CY and C, C Y, for each
n € N.

Remark 2.5. Of course, there are analogue results for compact absorbing contrac-
tive morphisms (see the ideas here and in [4, p. 243, 6}).

Remark 2.6. The results in Theorem 2.1 and Theorem 2.2 hold if admissible in
Definition 1.4 is replaced by permissible (see {4, p. 276]).

3. FIXED POINT THEORY FOR CONDENSING MAPS IN FRECHET SPACES

Let E and E, be as in Section 2. We consider single valued maps. Let M C E
and consider the map F : M — E. Let n € N and M, = jn pn(M). Since in this

section we only consider Volterra type operators, we assume
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(3.1) if z,y€ E with |z —y|, =0 then |Fz — Fy|, =0.
Now, (3.1) guarantees that we can define (a well defined) F, on M, as follows:
For any y € M, there exists a x € M with y = j, un(x) and we let
Foy=jopunFr
(we could of course call it F'y since it is clear in the situation we use it in; note
that, if there exists a 2 € M with y = j, pn(2), then j, pn F'z = jp pun F z from
(3.1)). In this paper, we assume that F,, will be defined on M, i.e. we assume that

the F,, described above admits an extension (again we call it F,) F: M, — E,

(we will assume certain properties on the extension).
Now, we present some Lefschetz type theorems in Fréchet spaces.

Definition 3.1. A set A C F is said to be PRCALS if, for each n € N, A, =
Jn ttn (A) is a CA Lefschetz space.

Definition 3.2. A set A C F is said to be CPRCALS if, for each n € N, A4, is a
CA Lefschetz space.

Example 3.1. Let A be pseudo-open. Then A is a PRCALS.
To see this, fix n € N. We know (see Example 2.1) that

A, is a open subset of E,.
Thus A, is a CA Lefschetz space (see Example 1.2), so A is a PRCALS.

Theorem 3.1. Let E and E, be as described in Section 2, C C E be an PRCALS
and F : C — E. Also, assume that, for each n € N, F, : C, — E, as described
above is a continuous map with  # F,(x) in E, for any x € 0Cy,. Suppose that

the following conditions are satisfied:
for each ne N, F, :C, — C, 1is a continuous map

(3.2) . — . .
with a compact attractor and F, : C, — E, is condensing;

(3.3) for each n € N, Ac, (Fp,) #0;

(3.4) for each n€{2,3,---} if ye C, solves y=F,y in E,
' then jixpknin' (y) € Cx for ke {1,--- ,n—1}.

Then F has a fized point in E.

Proof. For each n € N, there exists y, € C,, with y, = F,y, in E,. Let’s look at
{yn}nen. Notice that y3 € C1 and ji p1xJ; " (yk) € C1 for each k € N\{1} from
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(3.4). Note that

bt (yn) = Fy (1 n dr ()
in E1; to see note, for each n € N fixed, there exists z € E with y, = jn tin (2),
SO Jn tin () = Fp (Yn) = Jn pin F(z), on E,, so, on E;, we have

J1 Hin jgl(yn) = Hin .7;1 Jn bin (.’L') =n Hin .?;1 Jn bn F(x)
= J1 1,n i F(2) = j1 1 F(x) = F1(j1 a1 ()
= Fi(j1 p1n G G i (@) = F1 (J1 B1,m Gy (Um))-

Now, (3.2) guarantees that there exists is a subsequence N} of N and z; € Cy
with 1 p1nJnt (yn) — 21 in Ey as n — oo in N} and z = Fy 2 since Fy is
a continuous map. Note that 2y € Cy since z # Fi(z) in E; for any z € 9C;.
Let Ny = Ny\{1}. Now, jopsnj;!(yn) € Co for each n € Ny together with
(3.2) guarantees that there exists a subsequence Nj of N and 2 € C with
J2 HQ,nJ}fl (yn) — 22 in F3 as n — oo in NJ and 22 = Fpzp. Also, 23 € (.
Note from (2.4) and the uniqueness of limits that j; p12Jy 129 =z in Ep since
Nj C N1 (note jip1ndn’ (yn) = Jt p1,2 55 ' Jaton dn ! (yn) for each n € N3). Let
Ny = N3\ {2}. Proceed inductively to obtain subsequences of integers

Nf2N;D--, NyCH{kk+1,---}
and 2 € Ck with jx prndn! (yn) — 25 in Ex as n — oo in N} and 2z = F 2.
Also, z; € Ci. Note that ji tk k41 jk_-:l 241 = 2 in Ep for k € {1,2,---}. Also,
let Ny = NJ\{k}.
Fix k€ N. Now, 2z = F, z; in E;. Note as well that
2k = Jk P, k+1 j;;fl Zk+1 = Jk Bkk+1 J';;:l Jh+1 Mk+1,k+2 jk]’_‘g 242
= Jk bk k42 Jogn Zeb2 = 0 = Jk tkym - 2m = Thm Zm

for each m > k. We can do this for each k € N. As aresult, y = (z) € lim E,, =
E and also note z; € C), for each k€ N. Thus, for each k € N, we have

Jebe(y) =2k = Frze =jrpx Fy in Ex
so y=Fy in E. 0
Remark 3.1. Of course, one could remove z # F,(z) in E, for any z € 0C,
for each n € N if C is a closed subset of E. The proof follows as in Theorem

3.1 except in this case zx € Cy (but not necessarily in Cy). Also, from y =
(2¢) € lim Ep, = E and 7, (Ym) — 2 in Ep as m — oo, we can conclude that
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y € C = C (note that ¢ € C if and only if, for each k € N, there exists (xk,m) € C,
Thm = Tk (Tngm) for n >k with zp.,m — Jruk(g) in Ex as m — oo). Thus
2z = Jr ik (y) € Cr and so jguk (y) = jepw F (y) in Eg as before. Note in fact
that we can remove the assumption that C is a closed subset of E if we assume
F:Y —-2F with CCY and C, CY, for each n € N.

Remark 3.2. If we replace F, : C,, — E, is condensing in (3.2) with F, : C, — C,
is condensing and hemicompact, then one can remove x # F,(x) in E, for any
z€0C, and F,:C, — E, is a continuous map for each n € N in the statement
of Theorem 3.1 since if, for each n € N, F, : C,, — C,, is hemicompact, then we
automatically have that z, € Cy.

Essentially, the same reasoning as in Theorem 3.1 (with Remark 3.1) yields the
following result.

Theorem 3.2. Let E and E,, be as described in Section 2, C C E is an CPRCALS
and F :C — E. Also, assume that C is a closed subset of E and, for each n € N

F, : C, — E, is as described above. Suppose that the following conditions are
satisfied:

(3.5) for each n€ N, F,:C, — C, is a continuous
' condensing map with o compact attractor;

(3.6) for each n € N, Az (Fy,) # 0;

(3.7) for each n€{2,3,---}, if ye€ C, solves y=F,y in E,
’ then ji pkn jn' (y) € Cx for each ke {l,---,n—1}.

Then F has a fixed point in E.

Remark 3.3. Note that we can remove the assumption in Theorem 3.2 that C is
a closed subset of F if we assume F:Y — 2F with C CY and C, C Y, for each
neEN.

Definition 3.3. A set A C FE is said to be SPRLS if, for each n € N, A, =
Jn tin (A) is a special Lefschetz space.

Definition 3.4. A set A C E is said to be SCPRLS if, for each n € N, A, is a
special Lefschetz space.

Essentially, the same reasoning as in Theorem 3.1 yields the following results (we
also have an analogue of Remarks 3.1, 3.2 and 3.3).
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Theorem 3.3. Let E and E, be as described in Section 2, C C E is an SPRLS
and F : C — E. Also, assume that, for each n € N, F,: C, — E, as described
above is a continuous map with = # F,(z) in E, for any x € 0Cy,. Suppose that
(3.3), (3.4) and the following condition is satisfied:

(3.8) { for each n€ N, F,:C, — C, is a continuous map

and F, : C, — E, is condensing.
Then F has a fized point in E.

Theorem 3.4. Let E and E, be as described in Section 2, C C E is an SCPRLS
and F:C — E. Also, assume that C 1is a closed subset of E and, for each n € N,
F, : C, — E, is as described above. Suppose that (3.6), (3.7) and the following
condition is satisfied:

(3.9) for each ne N, F,:C, — C, is a continuous condensing map.

Then F has a fixed point in E.
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