SOME GENERALIZED FIXED POINT THEOREMS

Mee-Kwang Kang

1. Introduction

In 1974, Subrahmanyam[4] proved the following fixed point theorem of contraction principle. Let (X, d) be a complete metric space and let T be a contmuous mapping from X into itself. Suppose that there exists $r \in[0,1)$ such that

$$
d\left(T x, T^{2} x\right) \leq r \cdot d(x, T x) \text { for } x \in X
$$

Then there exists $z \in X$ such that $z=T z$.
In 1996, Kada, Suzuki and Takahashi[2] first introduced the concept of w-distance on a metric space and generalized Subrahmanyam fixed point theorem by weakenng the metric d and the contnuity of T with a w-distance p and some condition, respectıvely, as follows: Let X be a complete metric space, p a w-distance on X and T a mapping from X into itself. Suppose that there exists $r \in[0,1)$ such that

$$
\begin{equation*}
p\left(T x, T^{2} x\right) \leq r \cdot p(x, T x) \quad \text { for } \quad x \in X \tag{*}
\end{equation*}
$$

and that

$$
\begin{equation*}
\inf \{p(x, y)+p(x, T x): x \in X\}>0 \tag{**}
\end{equation*}
$$

for every $y \in X$ with $y \neq T y$. Then there exists $z \in X$ such that $z=T z$. This theorem also gencralzes the fixed point theorems of Kannan[3] and Ćirić[1].

Ume[5] improved fixed point theorems of Kannan[3], Cirićc[1] and Kada, Suzuki, and Takashi[2] by using the condition (**) for more
general contractive mapping than quasi-contractive mapping satisfying the condition (*).

In this paper, we obtain some generalizations of Subrahmanyam fixed point theorem and Ćirić fixed point theorem using the concept of w-distance.

2. Preliminaries

Definition 2.1. Let X be a metric space with a metric d. Then a function $p: X \times X \rightarrow[0, \infty)$ is called a w-distance on X if the following are satisfied:
(1) $p(x, z) \leq p(x, y)+p(y, z)$ for any $x, y, z \in X$;
(2) for any $x \in X, p(x, \cdot): X \rightarrow[0, \infty)$ is lower semicontinuous ;
(3) for any $\varepsilon>0$, there exists $\delta>0$ such that $p(z, x) \leq \delta$ and $p(z, y) \leq \delta$ imply $d(x, y) \leq \varepsilon$.

Consider some examples of a w-distance.
Example 1[2]. Let X be a metric space with a metric d. Then $p=d$ is a symmetric (i.e., $p(x, y)=p(y, x)$ for $x, y \in X) w$-distance on X.

Above example shows the possibility that a w-distance p is to be a very useful tool to generalize several fixed point theorems.

Example 2. Let X be a metric space and p a w-distance on X
Then the function $q: X \times X \rightarrow[0, \infty)$ defined by

$$
q(x, y)=\max \{p(x, y), p(y, x)\} \text { for } x, y \in X
$$

is a symmetric w-distance on X, provided that $p(\cdot, x): X \rightarrow[0, \infty]$ is lower semicontinuous.

Proof Let $x, y, z \in X$. Then we have

$$
\begin{aligned}
p(x, y) & \leq p(x, z)+p(z, y) \\
& \leq \max \{p(x, z), p(z, x)\}+\max \{p(z, y), p(y, z)\} \\
& =q(x, z)+q(z, y)
\end{aligned}
$$

Simılarly,

$$
p(y, x) \leq p(y, z)+p(z, x) \leq q(z, y)+q(x, z)
$$

Thus

$$
q(x, y)=\max \{p(x, y), p(y, x)\} \leq q(x, z)+q(z, y)
$$

which satisfies (1). For each $c \in \mathbb{R}$ and $x \in X$,

$$
\{y \mid q(x, y)>c\}=\{y \mid p(x, y)>c\} \cup\{y \mid p(y, x)>c\} .
$$

Since $p(x, \cdot)$ and $p(\cdot, x)$ are lower semicontimous, $\{y \in X \mid q(x, y)>$ c) is open in X, which shows that $q(x, \cdot)$ is a lower semicontinuous function satisfying (2). By using the condition (3) for p, we can easily show the condition (3) for q.

Remark that a w-distance $p X \times X \rightarrow[0, \infty)$ defined by $p(x, y)=$ $\|y\|$ in [2] is not symmetric.

Example 3. Let X be a normed mear space. Then a function $p: X \times X \rightarrow[0, \infty)$ defincd by

$$
p(x, y)=\max \{\|x\|,\|y\|\} \quad \text { for } x, y \in X,
$$

is a symmetric w-distance on X
Lemma 2.2[2] Let X be a metric space with a metric d and p a w-dustance on X. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences in $X,\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ sequences in $\{0, \infty)$ converging to 0 , and $x, y, z \in X$. Then the following hold :
(i) if $p\left(x_{n}, y\right) \leq \alpha_{n}$ and $p\left(x_{n}, z\right) \leq \beta_{n}$ for any $n \in N$, then $y=z$, in partucular, of $p(x, y)=0$ and $p(x, z)=0$, then $y=z$;
(i1) of $p\left(x_{n}, y_{n}\right) \leq \alpha_{n}$ and $p\left(x_{n}, z\right) \leq \beta_{n}$ for any $n \in N$, then. $\left\{y_{n}\right\}$ converges to z;
(iii) of $p\left(x_{n}, x_{m}\right) \leq \alpha_{n}$ for any $n, m \in N$ with $m>n$, then $\left\{x_{n}\right\}$ is a Cauchy sequence ;
(iv) of $p\left(y, x_{n}\right) \leq \alpha_{n}$ for any $n \in N$, then $\left\{x_{n}\right\}$ is a Cauchy sequence.

3. A generalization of Subrahmanyam fixed point theorem

In this section, we generalize Subrahmanyam fixed point theorem using the concept of a w-distance.

Theorem 3.1. Let T be a mapping from a metric space X into atself and p a w-distance on X. Suppose that there exists a point $u \in X$ such that
(1) $\left\{T^{n} u\right\}$ has a convergent subsequence with a limat $z \in X$;
(2) $p\left(T x, T^{2} x\right) \leq r \cdot p(x, T x)$ for $x \in O(u)$, where $O(u)=\left\{u, T u, T^{2} u, \cdots\right\}$ and $r \in[0,1)$;
(3) a functıon $G: X \rightarrow \mathbb{R}$ defined by $G(x)=p(x, T x)$ is lower semicontrnuous at $z \in X$;
(4) $p(z, x)=p(x, z)$ for each $x \in O(u)$.

Then z is a fixed point of T.
Proof. Set $x=T u$. Then by (2),

$$
p\left(T^{2} u, T^{3} u\right) \leq r \cdot p\left(T u, T^{2} u\right) \leq r^{2} \cdot p(u, T u) \leq \cdots
$$

By induction, we have

$$
p\left(T^{n} u, T^{n+1} u\right) \leq r^{n} \cdot p(u, T u) \quad \text { for any } \quad n \in N .
$$

If $m>n$,

$$
\begin{aligned}
p\left(T^{n} u, T^{m} u\right) & \leq p\left(T^{n} u, T^{n+1} u\right)+\cdots+p\left(T^{m-1} u, T^{m} u\right) \\
& \leq r^{n} \cdot p(u, T u)+\cdots+r^{m-1} \cdot p(u, T u) \\
& \leq \frac{r^{n}}{1-r} \cdot p(u, T u)
\end{aligned}
$$

From Lemma 2 2, it imphes that $\left\{T^{n} u\right\}$ is a Cauchy sequence. By (1), $\left\{T^{n} u\right\}$ converges to z. Since $G(x)=p(x, T x)$ is lower semicontinuous at z, we have

$$
\begin{aligned}
p(z, T z) & \leq \liminf _{n \rightarrow \infty} p\left(T^{n} u, T^{n+1} u\right) \\
& \leq \liminf _{n \rightarrow \infty} r^{n} \cdot p(u, T u) \\
& =0
\end{aligned}
$$

On the other hand, since $p\left(T^{n} u, \cdot\right)$ is lower semicontinuous at z,

$$
\begin{aligned}
p\left(T^{n} u, z\right) & \leq \lim _{m \rightarrow \infty} \inf p\left(T^{n} u, T^{m} u\right) \\
& \leq \frac{r^{n}}{1-r} \cdot p(u, T u)
\end{aligned}
$$

From (4) and the fact that $p(z, \cdot)$ is lower semicontinuous,

$$
\begin{aligned}
p(z, z) & \leq \liminf _{n \rightarrow \infty} p\left(z, T^{n} u\right) \\
& =\liminf _{n \rightarrow \infty} p\left(T^{n} u, z\right) \\
& \leq \liminf _{n \rightarrow \infty} \frac{r^{n}}{1-r} \cdot p(u, T u) \\
& =0
\end{aligned}
$$

Thus $p(z, z)=0$ and $p(z, T z)=0$. By Lemma 2.2 (i), we have $z=T z$.
Theorem 3.2. Let T be a mapping from a complete metric space X into itself and p a symmetric w-dustance on X Suppose that there exasts $r \in[0,1)$ such that

$$
p\left(T x, T^{2} x\right) \leq r \cdot p(x, T x)
$$

for any $x \in X$ and that $G(x)=p(x, T x)$ is lower semicontmuous. Then there exssts $z \in X$ such that $z=T z$. Moreover, $\ell f y=T y$, then $p(y, y)=0$.

Proof. Let $u \in X$. Then $\left\{T^{n} u\right\}$ is a Cauchy sequence. Since X is complete, $\left\{T^{n} u\right\}$ converges to some point $z \in X$. The remander of the process follows the proof of Theorcm 31 .

As a corollary, we obtain the following result of Subrahmanyam
Theorem 3.3[4]. Let X be a complete metric space with a metric d and T a contrnuous mapping from X into atself. Suppose that there exusts $r \in[0,1)$ such that

$$
d\left(T x, T^{2} x\right) \leq r \cdot d(x, T x)
$$

for $x \in X$. Then there exasts $z \in X$ such that $z=T z$.
Proof. Any metric d is a symmetric w-distance. And the continuity of T guarantees that $G(x)=d(x, T x)$ is lower semicontinuous.

4. A generalization of Ćirić fixed point theorem

Ćrrić[1] proved a fixed point theorem for a quasi-contractive mapping on a complete metric space. In this section, we generalize Ćirić fixed point theorem using the concept of a w-distance.

Lemma 4.1[5]. Let X be a metric space with a metric d and p a w-distance on X. Let T be a mapping of X into atself satisfying

$$
p(T x, T y) \leq r \cdot \max \{p(x, y), p(x, T x), p(y, T y), p(x, T y), p(y, T x)\}
$$

for all $x, y \in X$ and some $r \in[0,1)$. Then
(1) for cach $x \in X$ and $n \in N$,

$$
p\left(T^{n} x, T^{n+1} x\right) \leq \frac{r^{n-1}}{1-r} a(x)
$$

where $a(x)=p(x, x)+p(x, T x)+p(T x, x)$, and
(2) for each $x \in X,\left\{T^{n} x\right\}$ is a Cauchy sequence.

Theorem 4.2. Let X be a metruc space, p a w-distance on X, and T a mapping of X into itself. Suppose that there exusts a point $u \in X$ such that
(1) $\left\{T^{n} u\right\}$ has a convergent subsequence wth a limut $z \in X$;
(2) $p(T x, T y) \leq r \cdot \max \{p(x, y), p(x, T x), p(y, T y), p(x, T y), p(y, T x)\}$ for all $x, y \in O(u)$ and some $r \in[0,1)$;
(3) $p(z, x)=p(x, z)$ for each element x of $O(u)$.
(4) $G(x)=p(x, T x)$ is lower semicontinuous at $z \in X$.

Then z is a fixed point of T and $p(z, z)=0$.
Proof. By Lemma 4.1, $\left\{T^{n} u\right\}$ is a Cauchy sequence. Since $\left\{T^{n} u\right\}$ has a convergent subsequence with a limit $z,\left\{T^{n} u\right\}$ converges to z. If $n<m$,

$$
\begin{aligned}
p\left(T^{n} u, T^{m} u\right) & \leq p\left(T^{n} u, T^{n+1} u\right)+\cdots+p\left(T^{m-1} u, T^{m} u\right) \\
& \leq \frac{r^{n-1}}{1-r} \cdot a(u)+\cdots+\frac{r^{m-2}}{1-r} \cdot a(u) \\
& =\frac{r^{n-1}\left(1-r^{m-n}\right)}{(1-r)^{2}} \cdot a(u),
\end{aligned}
$$

where $a(u)=p(u, u)+p(u, T u)+p(T u, u)$. From the fact that $p(x, \cdot)$ is lower semicontinuous at z, we obtain

$$
\begin{aligned}
p\left(T^{n} u, z\right) & \leq \liminf _{m \rightarrow \infty} p\left(T^{n} u, T^{m} u\right) \\
& \leq \liminf _{m \rightarrow \infty} \frac{r^{n-1}\left(1-r^{m-n}\right)}{(1-r)^{2}} \cdot a(u) \\
& =\frac{r^{n-1}}{(1-r)^{2}} \cdot a(u)
\end{aligned}
$$

Again applying the lower semicontmulty of $p(x, \cdot)$, we obtain

$$
\begin{aligned}
p(z, z) & \leq \liminf _{n \rightarrow \infty} p\left(z, T^{n} u\right) \\
& =\liminf _{n \rightarrow \infty} p\left(T^{n} u, z\right) \\
& \leq \liminf _{n \rightarrow \infty} \frac{r^{n-1}}{(1-r)^{2}} \cdot a(u) \\
& =0 .
\end{aligned}
$$

And, the condition (4) induces that $p(z, T z)=0$ as follows;

$$
\begin{aligned}
p(z, T z) & \leq \liminf _{n \rightarrow \infty} p\left(T^{n} u, T^{n+1} u\right) \\
& \leq \liminf _{n \rightarrow \infty} \frac{r^{n-1}}{1-r} a(u) \\
& =0
\end{aligned}
$$

Therefore, $p(z, z)=0$ and $p(z, T z)=0$, which imples that $z=T z$ by Lemma 22 (1)

As a corollary, we obtain the following result of Ciric [1].
ThForem 4.3 Let X be a complete metric space with a metric d and $T: X \rightarrow X$ a mapping such that for all $x, y \in X$,

$$
d(T x, T y) \leq r \quad \max \{d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)\}
$$

for some $r \in[0,1)$. Then
(1) T has a unqque fixed point z in X,
(2) $\lim _{n} T^{n} x=z$.

Proof, Let $x \in X$. Then, by Lemma 4.1, $\left\{T^{n} x\right\}$ is a Cauchy sequence. Since X is complete, $\left\{T^{n} x\right\}$ converges to some point $z \in X$, which proves (2). On the other hand, since the metric d is a symmetric w-distance, the conditions (1), (2) and (3) in Theorem 4.2 are satisfied. Sunce $T^{n} x \rightarrow z$, we have

$$
\begin{array}{rlr}
d(T z, z) & \leq \liminf _{n \rightarrow \infty} d\left(T z, T^{n} x\right) & \\
& \leq \liminf _{n \rightarrow \infty} r \cdot \max \left\{d\left(z, T^{n-1} x\right), d(z, T z), d\left(T^{n-1} x, T^{n} x\right),\right. \\
& \leq r \cdot d(z, T z) & \left.d\left(z, T^{n} x\right), d\left(T^{n-1} x, T z\right)\right\} \\
& =r \cdot d(T z, z)
\end{array}
$$

Thus $d(T z, z)=0$, which imples that $z=T z$. To prove uniqueness, let $y=T y$ and $z=T z$ Then

$$
\begin{aligned}
d(y, z) & =d(T y, T z) \\
& \leq r \cdot \max \{d(y, z), d(y, T y), d(z, T z), d(y, T z), d(z, T y)\} \\
& =r \cdot \max \{d(y, z), d(y, y), d(z, z), d(y, z), d(z, y)\} \\
& =r \cdot d(y, z) .
\end{aligned}
$$

Hence $d(y, z)=0$ and $y=z$.
Corollary 4.4. Let X be a complete metruc space, p a w-distance on X, and T a continuous mapping from X into atself. Suppose that there exusts $r \in[0,1)$ such that

$$
p(T x, T y) \leq r \cdot \max \{p(x, y), p(x, T x), p(y, T y), p(x, T y), p(y, T x)\}
$$

for $x, y \in X$. Then T has a unique fixed point z and $p(z, z)=0$
Proof. Let $u \in X$, then $\left\{T^{n} u\right\}$ is a Cauchy sequence in a complete metric space X by Lemma 4.1. Let z be the limit of $\left\{T^{n} u\right\}$. Since T is continuous, we have

$$
T z=T\left(\lim _{n \rightarrow \infty} T^{n} u\right)=\lim _{n \rightarrow \infty} T^{n+1} u=z
$$

Therefore, z is a fixed point of T. Assume that $T(y)=y$ and $T(z)=z$ for some $y, z \in X$. Then

$$
p(y, y)=p(T y, T y) \leq r \cdot \max p(y, y),
$$

which shows that $p(y, y)=0$. Also,

$$
p(y, z)=p(T y, T z) \leq r \cdot \max \{p(y, z), p(z, y)\}
$$

and

$$
p(z, y)=p(T z, T y) \leq r \cdot \max \{p(z, y), p(y, z)\}
$$

If $p(y, z) \leq p(z, y)$ then $p(z, y) \leq p(z, y)$, which implies $p(z, y)=0$. Since $p(z, z)=0$ and $p(z, y)=0$, by Lemma 22 we have $z=y$

References

[1] L. J Ćırıć, A generalization of Banach's contractaon princzple, Proc. Amer Math Soc 45 (1974), 267-273
[2] O. Kada T Suzuki, and W. Takahashı, Nonconvex manamzation theorems and fixed point theorems in complete metric space, Math Japonica 44 (1996), 381391
[3] R Kannan, Some results on fixed points, II, Amer. Math Monthly 76 (1969), 405-408
[4] P V Subrahmanyam, Remarks on some fixed pont theorems related to Banach's contraction princzple, J Math Phys Scı 8 (1974), 445-457
[5] J S. Ume, Fixed ponnt theorems related to Curić's contraction prancuple, I Math Anal Appl 225 (1998), 630-640.

Department of Mathematics
Dongeu University
Pusan 614-714, Korea
E-mal: mee@hyomm dongeurac kr

