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WORKOUT FOR α-ψ-ϕ-CONTRACTIONS IN GENERALIZED
TRIPLED METRIC SPACE WITH APPLICATION

Ghorban Khalilzadeh Ranjbar

Abstract. In this paper, by using fixed point techniques, we establish some com-
mon fixed point theorems for mappings satisfying an α-ψ-ϕ-contractive condition in
generalized tripled metric space. Finally, we give an example to illustrate our main
outcome.

1. Introduction and Preliminaries

It is also known that common fixed point theorems are generalizations of fixed
point theorems. Thus, over the past few decades, there have been many researchers
who have interested in generalizing fixed point theorems to coincidence point theo-
rems and common fixed point theorems. In this paper, we prove some common fixed
point theorems for a larger class of α-ψ-ϕ-contractions in generalized tripled metric
spaces.

Definition 1.1. Let Y be a non-empty set and d : Y ×Y → R+ be a mapping such
that, for all x, y ∈ Y and for all distinct points u, v ∈ Y each of them different from
x and y, we have

(1) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x);

(iii) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y) (rectangular inequality).

Then (Y, d) is called a generalized metric space or shortly GMS.

Definition 1.2. Let (Y, d) be a GMS, {yn} be a sequence in Y and y ∈ Y . Then

(i) We say that {yn} is GMS convergent to y if and only if d(yn, y) → 0 as
n →∞;
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(ii) We say that {yn} is a GMS Cauchy sequence if and only if for each ε > 0,
there exists a natural number N such that d(yn, ym) < ε for all n > m ≥ N ;

(iii) (Y, d) is called GMS complete if every GMS Cauchy sequence is GMS con-
vergent in Y .

We denote by Ψ the set of function ψ : [0,∞) → [0,∞) satisfying the following
hypothesis

(ψ1) ψ is continuous and nondecreasing;
(ψ2) ψ(t) = 0 if and only if t = 0.

we denote by Φ the set of function ϕ : [0,∞) → [0,∞) satisfying the following
hypothesis

(ϕ1) ϕ is lower semi-continuous;
(ϕ2) ϕ(t) = 0 if and only if t = 0.

Lakzian ans Samet established the following fixed point theorem involving a pair of
altering distance functions in a generalized complete metric space.

Theorem 1.3 ([12]). Let (Y, d) be a Hausdorff and complete GMS and let T : Y → Y

be a self-mapping satisfying

ψ(d(Tx, Ty)) ≤ ψ(d(x, y))− ϕ(d(x, y))

for all x, y ∈ Y , where ψ ∈ Ψ and ϕ : [0,∞) → [0,∞) is continuous and ϕ(t) = 0 if
and only if t = 0. Then T has a unique fixed point.

Let (Y, d) be a non-empty set and T, f : Y → Y . The mappings T and f are
said to be weakly compatible if they commute at their concidence points such that
Tfx = fTx. A point y ∈ Y is called point of the coincidence of T and f , if there
exists a point x ∈ Y such that y = Tx = fx.

Theorem 1.4 ([13]). Let (Y, d) be a Hausdorff GMS, and let T and f be a self-
mappings on Y , such that TY ⊂ fY . Assume that (fY, d) is a complete GMS and
that the following conditions holds:

ψ(d(Tx, Ty)) ≤ ψ(d(fx, fy))− ϕ(d(fx, fy))

for all x, y ∈ Y , where ψ ∈ Ψ and ϕ ∈ Φ. Then T and f have a unique point of
coincidence in Y . Moreover if T and f are weakly compatible, then T and f have a
unique common fixed point.
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2. Main Results

In this section, first we define a GMS tripled metric space and we prove some
common fixed point results for two self-mapping satisfying an α-ϕ-ψ-contraction
condition.

Definition 2.1. Let Y be a non-empty set and S : Y × Y × Y → R+ be a mapping
such that for all x, y, z ∈ Y and for all distinct u, v, w ∈ Y each of them difference
from x, y and z, such that, S satisfies on following conditions

(i) S(x, y, z) = 0 if and only if x = y = z;
(ii) S(x, y, z) = S(x, z, y) = S(z, y, x) = S(y, x, z) = S(z, x, y) = S(y, z, x);

(iii) S(x, y, z) ≤ S(x, u, u) + S(v, y, v) + S(w, w, z);
(v) for all x, y,∈ Y , S(x, x, y) = S(x, y, y).

Then (Y, S) is called a generalized tripled metric space (GTMS).

Definition 2.2. Let T , f : Y → Y and α : Y × Y × Y → [0,∞). The mapping
T is f -α-admissible, if for all x, y, z ∈ Y , such that α(fx, fy, fz) ≥ 1, we have
α(Tx, Ty, Tz) ≥ 1. If f is the identity mapping, then T is called α-admissible.

Definition 2.3. Let (Y, S) be a generalized tripled metric space and α : Y ×Y ×Y →
[0,∞). Y is α-regular, if for every sequence {yn} ⊂ Y such that α(xn, xn+1, xn+1) ≥
1, for all n ∈ N and S(x, x, xn) → 0 or S(x, xn, xn) → 0 as n →∞, then there exists
a subsequence of {xn} such that α(xnk

, x, x) ≥ 1 or α(xnk
, xnk

, x) ≥ 1 for all n ∈ N.

Definition 2.4. Let (Y, S) be a GTMS, {yn} be a sequence in Y and y ∈ Y , then

(i) we define that {yn} is GTMS convergent to y, if and only if S(yn, y, y) → 0
or S(yn, yn, y) → 0 as n →∞;

(ii) we define that {yn} is GTMS Cauchy sequence if and only if, for each ε > 0,
there exists a natural number n(ε) such that S(yn, ym, ym) < ε, for all
n > m > n(ε);

(iii) (Y, S) is called GTMS complete if every GTMS-Cauchy sequence is GTMS
convergent in Y .

Theorem 2.5. Let (Y, S) be a GTMS and let T and f be self-mappings on Y such
that TY ⊆ fY and α : Y × Y × Y → [0,∞). Assume that (fY, S) is a complete
GTMS and that the following condition holds

(2.1) ψ(α(fx, fy, fz)S(Tx, Ty, Tz)) ≤ ψ (M(x, y, z))− ϕ (M(x, y, z))
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for all x, y, z ∈ Y , where ψ ∈ Ψ, ϕ ∈ Φ and M(x, y, z) = max{S(fx, fy, fz)},
S(fx, Tx, Tx), S(fy, Ty, Ty), S(fz, Tz, Tz).

Let also that the following condition hold

(i) T is f-α-admissible;
(ii) there exists x0, x1 ∈ Y such that α(fx0, Tx0, Tx1) ≥ 1;

(iii) Y is α-regular and for every sequence {xn} ⊆ Y such that α(xn, xn+1, xn+1) ≥
1, we have α(xm, xn, xn) ≥ 1 or α(xm, xm, xn) ≥ 1 for all m,n ∈ N;

(iv) either α(fu, fv, fw) ≥ 1 or α(fv, fu, fw) ≥ 1 or α(fw, fv, fu) ≥ 1 or
α(fu, fw, fv) ≥ 1 whenever fu = Tu, fv = Tv and fw = Tw.

Then T and f have a unique point of coincidence in Y . Moreover, if T and f are
weakly compatible, then T and f have a unique common fixed point.

Proof. Suppose x0 ∈ Y such that α(fx0, Tx0, Tx0) ≥ 1. Define the sequence
{xn} and {yn} in Y by yn = fxn+1 = Txn, (n ∈ N ∪ {0}). Moreover, we as-
sume that if yn = Txn = Txn+p = yn+p, then we choose xn+p+1 = xn+1. Since
TY ⊆ fY . In particular, if yn = yn+1, then yn+1 is a point of coincidence of T

and f , consequently, we can suppose that yn 6= yn+1 for all n ∈ N. By condition
(ii) we have α(fx0, Tx0, Tx1) ≥ 1, thus α(fx0, fx1, fx2) ≥ 1. Since by hypothe-
ses T is f -α-admissible, we obtain α(Tx0, Tx1, Tx2) = α(fx1, fx2, fx3) ≥ 1 and
α(Tx2, Tx3, Tx4) = α(fx3, fx4, fx5) ≥ 1. By induction, we get α(fxn, fxn+1, fxn+2)
≥ 1 for all n ∈ N ∪ {0}. Now by (2.1), we have

ψ (S(Txn, Txn+1, Txn+1)) ≤ ψ (α(fxn, fxn+1, fxn+1)S(Txn, Txn+1, Txn+1))

≤ ψ (M(xn, xn+1, xn+1))− ϕ (M(xn, xn+1, xn+1)) ,(2.2)

where

M(xn, xn+1, xn+1) = max
{
S(fxn, fxn+1, fxn+1), S(fxn, Txn, Txn),

S(xn+1, Txn+1, Txn+1), S(fxn+1, Txn+1, Txn+1)
}

= max
{
S(yn−1, yn, yn), S(yn−1, yn, yn),

S(yn, yn+1, yn+1), S(yn, yn+1, yn+1)
}

= max
{
S(yn−1, yn, yn), S(yn, yn+1, yn+1)

}
.

From (2.2) we get

(2.3) ψ (S(yn, yn+1, yn+1)) ≤ ψ (M(xn, xn+1, xn+1))− ϕ (M(xn, xn+1, xn+1)) .
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If max {S(yn−1, yn, yn), S(yn, yn+1, yn+1)} = S(yn, yn+1, yn+1), from (2.3), we have

(2.4) ψ (S(yn, yn+1, yn+1)) ≤ ψ (S(yn+1, yn+1, yn))− ϕ (S(yn+1, yn+1, yn))

and hence S(yn+1, yn+1, yn) = 0 which is a contradiction. Thus

M(xn, xn+1, xn+1) = S(yn−1, yn, yn) > 0.

From (2.4) we get

ψ (S(yn, yn+1, yn+1))≤ψ (S(yn−1, yn, yn))−ϕ (S(yn−1, yn, yn))<ψ (S(yn−1, yn, yn)) .

Because ψ is nondecreasing, then

S(yn, yn+1, yn+1) < S(yn−1, yn, yn)

for all n ∈ N. That is the sequence of nonnegative numbers {S(yn, yn+1, yn+1)}
is decreasing, Hence, it converges to a nonnegative number, say t ≥ 0. If t > 0,
then letting n → ∞ in (2.4), we obtain ψ(t) ≤ ψ(t) − ϕ(t) which implies t = 0,
that is limn→∞ S(yn, yn+1, yn+1) = 0. Suppose that yn 6= ym for all m 6= n and
prove that {yn} is a GTMS Cauchy sequence. First, we show that the sequence
{S(yn, yn+2, yn+2)} is bounded. Since S(yn, yn+1, yn+1) → 0 as n →∞, there exists
L > 0 such that S(yn, yn+1, yn+1) ≤ L, for all n ∈ N. If S(yn, yn+2, yn+2) > L, for
all n ∈ N, from

M(xn, xn+2, xn+2) = max
{
S(fxn, fxn+2, fxn+2), S(fxn, Txn, Txn),

S(fxn+2, Txn+2, Txn+2), S(fxn+2, Txn+2, Txn+2)
}

= max
{
S(yn−1, yn+1, yn+1), S(yn−1, yn, yn), S(yn+1, yn+2, yn+2)

}
.

Because

S(yn+1, yn+2, yn+2) < S(yn, yn+1, yn+1), and S(yn, yn+1, yn+1) < S(yn−1, yn, yn),

thus we have

M(xn, xn+2, xn+2) = max
{
S(yn−1, yn, yn), S(yn−1, yn+1, yn+1)

}

and by (2.1) we conclude that

ψ (S(yn, yn+2, yn+2)) = ψ (S(Txn, Txn+2, Txn+2))

≤ ψ (α(fxn, fxn+2, fxn+2))− ϕ(S(Txn, Txn+2, Txn+2))

≤ ψ (M(xn, xn+2, xn+2))− ϕ (M(xn, xn+2, xn+2))

< ψ (M(xn, xn+2, xn+2)) .

(2.5)
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If M(xn, xn+2, xn+2) = S(yn−1, yn+1, yn+1) from (2.5), we have

ψ (S(yn, yn+2, yn+2)) < ψ (S(yn−1, yn+1, yn+1)) .

Therefore the sequence {S(yn, yn+2, yn+2)} is decreasing and hence is bounded. If

M(xn, xn+2, xn+2) = S(yn−1, yn, yn)

from (2.5), we have ψ (S(yn, yn+2, yn+2)) < ψ (S(yn−1, yn, yn)). Since ψ is nonde-
creasing, thus we have

S(yn, yn+2, yn+2) < S(yn−1, yn, yn) < · · · < S(y1, y2, y2).

and the sequence {S(yn, yn+2, yn+2)} is bounded. If for some n ∈ N, we have
S(yn−1, yn+1, yn+1) ≤ L and S(yn, yn+2, yn+2) > L, then

ψ (S(yn, yn+2, yn+2)) = ψ (S(Txn, Txn+2, Txn+2))

≤ ψ (α(fxn, fxn+2, fxn+2))S(Txn, Txn+2, Txn+2)

≤ ψ (M(xn, xn+2, xn+2))− ϕ (M(xn, xn+2, xn+2))

< ψ (M(xn, xn+2, xn+2)) .

Now, if

M(xn, xn+2, xn+2) = S(yn−1, yn+1, yn+1) ≤ L,

we obtain S(yn, yn+2, yn+2) < L, a contradiction. If

M(xn, xn+2, xn+2) = S(yn−1, yn, yn) ≤ L,

we obtain ψ (S(yn, yn+2, yn+2)) < ψ(L) and S(yn, yn+2, yn+2) < L, a contradiction.
Then S(yn, yn+2, yn+2) > L or S(yn, yn+2, yn+2) ≤ L for all n ∈ N and in both cases
the sequence {S(yn, yn+2, yn+2)} is bounded. Now, if

(2.6) lim
n→∞S(yn, yn+2, yn+2) = 0

does not satisfied, then there exists a subsequence {ynk
} of {yn} such that

S(ynk
, ynk+2

, ynk+2
) → t > 0 as k →∞.
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From

S(ynk−1
, ynk+1

, ynk+1
) ≤ S(ynk−1

, ynk
, ynk

) + S(ynk+1
, ynk+2

, ynk+2
)

+ S(ynk+1
, ynk+3

, ynk+3
)

≤ S(ynk−1
, ynk

, ynk
) + S(ynk+1

, ynk+2
, ynk+2

)

+ S(ynk+1
, ynk−1

, ynk−1
) + S(ynk+3

, ynk+2
, ynk+2

)

+ S(ynk+3
, ynk+4

, ynk+4
).

If k →∞ we have

lim
k→∞

S(ynk−1
, ynk+1

, ynk+1
) ≤ 0 + 0 + lim

k→∞
S(ynk+1

, ynk+3
, ynk+3

)

≤ 0 + 0 + lim
k→∞

S(ynk−1
, ynk+1

, ynk+1
) + 0 + 0

= lim
k→∞

S(ynk−1
, ynk+1

, ynk+1
).

We obtain that limk→∞ S(ynk−1
, ynk+1

, ynk+1
) = t. By (2.1) with x = xnk

and
y = xnk+2

, we have

ψ
(
S(Txnk

, Txnk+2
, Txnk+2

)
) ≤ ψ

(
α(fxnk

, fxnk+2
, fxnk+2

)
)
S(Txnk

, Txnk+2
, Txnk+2

)

≤ ψ
(
M(xnk

, xnk+2
, xnk+2

)
)− ϕ

(
M(xnk

, xnk+2
, xnk+2

)
)

(2.7)

where

M(xnk
, xnk+2

, xnk+2
) = max

{
S(fxnk

, fxnk+2
, fxnk+2

),

S(fxnk
, Txnk

, Txnk
), S(fxnk+2

, Txnk+2
, Txnk+2

)
}

= max
{
S(ynk−1

, ynk+1
, ynk+1

), S(ynk−1
, ynk

, ynk
),

S(ynk+1
, ynk+2

, ynk+2
)
}
.

This implies limk→∞M(xnk
, xnk+2

, xnk+2
) = t. From (2.7) as k →∞, we get ψ(t) ≤

ψ(t)−ϕ(t), which implies t = 0. Now, if possible, let {yn} be not a Cauchy sequence.
Then there exists ε > 0 fro which we can find subsequence {ymk

} and {ynk
} of {yn}

with nk > mk > k such that

(2.8) S(ymk
, ynk

, ynk
) ≥ ε,

where corresponding to mk, we can choose nk in such a way that it is the smallest
integer with nk −mk ≥ 3 and satisfying (2.8). Then

(2.9) S(ymk
, ymk−1

, ymk−1
) < ε.
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By using (2.8), (2.9) and the rectangular inequality, we get

ε ≤ S(ynk
, ynk

, ymk
)

≤ S(ynk
, ynk−2

, ynk−2
) + S(ynk

, ynk−1
, ynk−1

) + S(ymk
, ynk−3

, ynk−3
)

< S(ynk
, ynk−2

, ynk−2
) + S(ymk

, ynk−3
, ynk−3

) + ε

< S(ynk
, ynk−2

, ynk−2
) + ε + S(ymk

, ynk
, ynk

)

+ S(ynk−3
, ynk−2

, ynk−2
) + S(ynk−3

, ynk−1
, ynk−1

)

< ε + ε + S(ymk
, ynk

, ynk
) + ε + S(ynk−3

, ynk−1
, ynk−1

)

< ε + ε + S(ymk
, ynk

, ynk
) + ε + S(ynk−3

, ynk−2
, ynk−2

)

+ S(ynk−1
, ynk

, ynk
) + S(ynk−1

, ynk+1
, ynk+1

).

(2.10)

Letting k →∞ in the above inequality, using (2.4) and (2.5), we obtain

(2.11) S(ymk
, ynk

, ynk
) → ε+.

From

S(ymk
, ynk

, ynk
)− S(ymk−1

, ymk
, ymk

)− S(ynk−1
, ynk

, ynk
)

≤ S(ynk−1
, ymk−1

, ymk−1
)

≤ S(ynk−1
, ynk

, ynk
) + S(ymk−1

, ymk
, ymk

) + S(ymk−1
, ymk+1

, ymk+1
).

Letting k →∞, we get

(2.12) S(ynk−1
, ymk−1

, ymk−1
) → ε+.

From (2.1) with x = xnk
and y = xnk

m we obtain

ψ (S(Txmk
, Txnk

, Txnk
)) ≤ ψ (α(fxmk

, fxnk
, fxnk

))S(Txmk
, Txnk

, Txnk
)

≤ ψ (M(fxmk
, fxnk

, fxnk
))− ϕ (M(fxmk

, fxnk
, fxnk

)) .

So

M(fxmk
, fxnk

, fxnk
)

= max
{
S(fxmk

, fxnk
, fxnk

), S(fxmk
, Txmk

, Txmk
), S(fxnk

, Txnk
, Txnk

)
}

= max
{
S(ymk−1

, ynk−1
, ynk−1

), S(ymk−1
, ymk

, ymk
), S(ynk−1

, ynk
, ynk

)
}

= max
{
S(ymk−1

, ynk−1
, ynk−1

), S(ynk−1
, ynk

, ynk
), S(ymk−1

, ymk
, ymk

)
}
.

By using the continuity of ψ and the lower semi-continuous of ϕ as k → ∞, we
obtain ψ(ε) ≤ ψ(ε) − ϕ(ε) which implies that ε = 0, a contradiction with ε > 0.
Hence {yn} is a GTMS Cauchy sequence. Since (fY, S) is GTMS complete, there
exists z ∈ fY such that yn → z. Let y ∈ Y be such that fy = z. Since Y is
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α-regular there exists a subsequence {ynk
} of {yn} such that α(ynk−1

, fy, fy) ≥ 1
for all k ∈ N. If fy 6= Ty, applying (2.1) with x = xnk

, we get

ψ (S(Txnk
, T y, Ty)) ≤ ψ (α(fxnk

, fy, fy)S(Txnk
, Ty, Ty))

≤ ψ (M(fxnk
, fy, fy))− ϕ (M(fxnk

, fy, fy)) ,

where

M(fxnk
, fy, fy) = max

{
S(fxnk

, fy, fy), S(fxnk
, Txnk

, Txnk
), S(fy, Ty, Ty)

}

= max
{
S(ynk−1

, fy, fy), S(ynk−1
, ynk

, ynk
), S(fy, Ty, Ty)

}
.

From S(ynk−1
, fy, fy), S(ynk−1

, ynk
, ynk

) → 0 as k → ∞ for k great enough, we
deduce M(fxnk

, fy, fy) = S(fy, Ty, Ty). On the other hand

S(Ty, fy, fy) = S(fy, Ty, Ty)

≤ S(fy, ynk−1
, ynk−1

) + S(Ty, ynk
, ynk

) + S(Ty, ynk+1
, ynk+1

)

implies

S(fy, Ty, Ty) ≤ lim inf
k→∞

S(Ty, Txnk+1
, Txnk+1

).

Because ψ is continuous and non-decreasing, for k great enough, we get

ψ (S(Ty, fy, fy)) ≤ lim inf
k→∞

ψ
(
S(Ty, Txnk+1

, Txnk+1
)
)

≤ ψ (S(fy, fy, Ty))− ϕ (S(fy, fy, Ty))

which implies S(fy, fy, Ty) = 0, that is fy = Ty = z and so z is a point of
coincidence for T and f . Suppose that there exist n, p ∈ N such that yn = yn+p,
We prove that p = 1, then fxn+1 = Txn = Txn+1 = yn+1 and so yn+1 is a point
of coincidence of T and f . Let p > 1, this implies that S(yn+p−1, yn+p, yn+p) > 0.
using (2.3), we obtain

ψ (S(yn, yn+1, yn+1)) = ψ (S(yn+p, yn+p+1, yn+p+1))

≤ ψ (S(yn+p−1, yn+p, yn+p))− ϕ (S(yn+p−1, yn+p, yn+p))

< ψ (S(yn+p−1, yn+p, yn+p)) .

Because the sequence {S(yn, yn+1, yn+1)} is decreasing, we deduce

ψ (d(yn, yn+1, yn+1)) < ψ (S(yn, yn+1, yn+1)) ,

a contradiction and hence p = 1. We deduce that T and f have a point of coincidence.
The uniqueness of the point coincidence is a consequence of conditions (2.1), (iv)
and so we omit the details. Now, if z is the point of coincidence of T and f as



292 Ghorban Khalilzadeh Ranjbar

T and f are weakly compatible. We deduce that fz = Tz and so z = fz = Tz.
Consequently, z is the unique common fixed point of T and f . ¤

If we choose f = IY the identity mapping on Y , we deduce the following corollary.

Corollary 2.6. Let (Y, S) be a complete GTMS. Let T be a self-mapping on Y , and
α : Y 3 → [0,∞). Assume that the following condition holds:

ψ (α(x, y, z)S(Tx, Ty, Tz)) ≤ ψ (M(x, y, z))− ϕ (M(x, y, z))

for all x, y, z ∈ Y , where ψ ∈ Ψ, ϕ ∈ Φ and

M(x, y, z) = max {S(x, y, z), S(x, Tx, Tx), S(y, Ty, Ty), S(z, Tz, Tz)} .

Assume also that the following condition hold:

(i) T is α-admissible;
(ii) there exists x0 ∈ Y such that α(x0, Tx0, Tx0) ≥ 1;

(iii) Y is α-regular, for every sequence {xn} ⊂ Y such that α(xn, xn+1, xn+1) ≥
1, we have α(xm, xn, xn) ≥ 1 for all m, n ∈ N with m < n;

(iv) either α(u, v, w) ≥ 1 or α(w, v, u) ≥ 1 or α(u,w, v) ≥ 1 or α(v, u, w) ≥ 1
whenever u = Tu, v = Tv and w = Tw. Then T has a unique fixed point.

From Theorem 1.3, if the function α : Y ×Y ×Y → [0,∞) is such that α(x, y, z) =
1 for all x, y, z ∈ Y , we deduce the following theorem.

Theorem 2.7. Let (Y, S) be a GTMS and let T and f be self-mapping on X, such
that TY ⊆ fY . Assume that (fY, S) is a complete GTMS and that the following
condition holds:

ψ (S(Tx, Ty, Tz)) ≤ ψ (M(x, y, z))− ϕ (M(x, y, z))

for all x, y, z ∈ Y , where ψ ∈ Ψ, ϕ ∈ Φ and

M(x, y, z) = max {S(fx, fy, fz), S(fx, Tx, Tx), S(fy, Ty, Ty), S(fz, Tz, Tz)} .

Then T and f have a unique point of coincidence in X. Moreover, if T and f are
weakly compatible, then T and f have a unique common fixed point.

From Theorem 2.5 in the setting of partially ordered GTMS spaces, we get the
follow theorem.
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Theorem 2.8. Let (Y, S,¹) be a partially ordered GTMS and let T and f be a
self-mappings on Y such that TY ⊆ fY . Assume that (fY, S) is a complete GTMS
and that the following condition holds

ψ (S(Tx, Ty, Tz)) ≤ ψ (M(x, y, z))− ϕ (M(x, y, z)) ,

for all x, y, z ∈ Y such that fx ¹ fy ¹ fz, where ψ ∈ Ψ and ϕ ∈ Φ with ψ(t)−ϕ(t) ≥
0, for all t ≥ 0, and

M(x, y, z) = max {S(fx, fy, fz), S(fx, Tx, Tx), S(fy, Ty, Ty), S(fz, Tz, Tz)} .

Assume also that the following conditions hold.

(i) T is a f -nondecreasing;
(ii) there exists x0 ∈ Y such that fx0 ¹ Tx0;
(iii) if {xn} ⊂ Y is such that xn ¹ xn+1 for all n ∈ N and xn → x, then there

exists a subsequences {xnk
} of {xn} such that xnk

¹ x for all k ∈ N;
(iv) for all u, v ∈ Y such that fu = Tu and fv = Tv then fu and fv are

comparable.

Then T and f have a unique point of coincidence in Y . Moreover, if T and f are
weakly comparable then T and f have a unique common fixed point.

Proof. Define the mapping α : Y × Y × Y → [0,∞) by

(2.13) α(x, y, z) =
{

1, x, y, z ∈ fY and x ¹ y ¹ z,
0, otherwise.

Then we can verify easily that T is an f -α-admissible mapping. Let {xn} be a
sequence in Y such that α(xn, xn+1, xn+2) ≥ 1, for all n ∈ N and xn → x ∈ Y as
n → ∞. By the definition of α, we have xn, xn+1, xn+2 ∈ fY and xn ¹ xn+1 ¹
xn+2 for all n ∈ N. Since fY is complete, we deduce that x ∈ fY . By (iii),
there exists a subsequence {xnk

} of {xn} such that xnk
¹ x, for all k ∈ N, and so

α(xnk
, x, x) ≥ 1 and α(xnk

, xnk
, x) ≥ 1 for all k ∈ N and so Y is α-regular. Moreover,

α(xm, xn, xn) ≥ 1 for all m,n ∈ N, with m < n. Hence, (iii) of Theorem 2.5 holds.
The same considerations show that (ii) and (iv) of this Theorem imply (ii) and (iv)
of Theorem 2.5. Thus the hypothesis (i) - (iv) of Theorem 2.5 are satisfied. Also
the contractive condition (2.2) is satisfied, since α(fx, fy, fz) = 1 for all x, y, z ∈ Y

such that fx ¹ fy ¹ fz. Otherwise, ψ (α(fx, fy, fz)S(Tx, Ty, Tz)) = 0 and so
condition (2.1) holds. From Theorem 2.5, T and f have a unique common fixed
point. ¤
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From Theorem 2.5, we can derive many interesting fixed point results in GTMS.
Denote by Γ the set of functions µ : [0,∞) → [0,∞) lebesque integrable on each
compact subset of [0,∞) such that, for rvery ε > 0, we have

∫ ε
0 µ(s) ds > 0. As the

function ψ : [0,∞) → [0,∞) defined by ψ(t) =
∫ t
0 µ(s) ds belongs to Ψ, we obtain

the following theorem.

Theorem 2.9. Let (Y, S) be a GTMS and let T and f be self-mappings on Y such
that TY ⊆ fY and α : Y × Y × Y → [0,∞). Assume that (fY, S) is a complete
GTMS and that the following condition holds

∫ α(fx,fy,fz)S(Tx,Ty,Tz)

0
µ(s) ds ≤

∫ M(x,y,z)

0
µ(s) ds−

∫ M(x,y,z)

0
µ(s) ds,

for all x, y, z ∈ Y , where λ, δ ∈ Γ and

M(x, y, z) = max {S(fx, fy, fz), S(fx, Tx, Tx), S(fy, Ty, Ty), S(fz, Tz, Tz)} .

Assume also that the following conditions hold.

(i) T is a f -α-nondecreasing;
(ii) there exists x0 ∈ Y such that α(fx0, Tx0, Tx0) ≥ 1;
(iii) Y is α-rgular and for every sequence {xn} ⊂ Y , α(xn, xn+1, xn+2) ≥ 1, we

have α(xm, xn, xn) ≥ 1 for all m,n ∈ N with m < n;
(iv) either α(fu, fv, fw) ≥ 1 or α(fv, fu, fw) ≥ 1, or α(fw, fv, fu) ≥ 1, or

α(fu, fw, fv) ≥ 1, whenever fu = Tu, fv = Tv, and fw = Tw.

Then T and f have a unique point of coincidence in Y . Moreover, if T and f are
weakly compatible then T and f have a unique common fixed point.

Taking δ(s) = (1− k)λ(s) for k ∈ [0, 1) in Theorem 2.9, we obtain the following
result.

Theorem 2.10. Let (Y, S) be a GTMS and let T and f be self-mappings on Y such
that TY ⊆ fY and α : Y × Y × Y → [0,∞). Assume that (fY, S) is a complete
GTMS and that the following condition hold.

∫ α(fx,fy,fz)S(Tx,Ty,Tz)

0
µ(s) ds ≤ k

∫ M(x,y,z)

0
µ(s) ds,

for all x, y, z ∈ Y , where k ∈ [0, 1). Let also thet the following condiotons hold.

(i) T is a f -α-admissibble;
(ii) there exists x0 ∈ Y such that α(fx0, Tx0, Tx0) ≥ 1;
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(iii) Y is α-regular and for every sequence {xn} ⊂ Y such that α(xn, xn+1, xn+2) ≥
1, we have α(xm, xn, xn) ≥ 1 for all m, n ∈ N with m < n;

(iv) either α(fu, fv, fw) ≥ 1 or α(fv, fu, fw) ≥ 1, or α(fw, fv, fu) ≥ 1, or
α(fu, fw, fv) ≥ 1, whenever fu = Tu, fv = Tv, and fw = Tw.

Then T and f have a unique point of coincidence in Y . Moreover, if T and f are
weakly compatible then T and f have a unique common fixed point.

Example 2.11. Let Y = [0, 1] and B = {1
4 , 1

5 , 1
6 , 1

7 , 1
8 , 1

9}. We define the GTMS, S

on Y as follows.

S

(
1
4
,
1
7
,
1
6

)
=

3
7
, S

(
1
4
,
1
7
,
1
7

)
=

8
7
,

S

(
1
7
,
1
8
,

1
11

)
=

1
11

, S

(
1
7
,
1
8
,

1
11

)
=

1
7
,

S

(
1
7
,
1
9
,
1
9

)
=

8
7
, S

(
1
8
,

1
10

,
1
10

)
=

3
7
,

S

(
1
9
,
1
9
,
1
7

)
=

8
7
, S

(
1
10

,
1
8
,
1
8

)
=

3
7
,

S

(
1
4
,
1
8
,
1
8

)
=

4
7
, S

(
1
7
,
1
7
,
1
9

)
=

8
7
,

S

(
1
6
,

1
10

,
1
10

)
=

3
7
, S

(
1
6
,
1
6
,

1
10

)
=

3
7
,

S

(
1
11

,
1
5
,
1
5

)
=

3
7
, S

(
1
5
,
1
7
,
1
7

)
=

4
7
,

S

(
1
5
,
1
5
,
1
7

)
=

4
7
, S

(
1
11

,
1
10

,
1
10

)
=

2
7
,

S

(
1
4
,
1
4
,
1
8

)
=

4
7
.

We have S(x, y, z) = |x− y| + |y − z|. (Y, S) is a complete GTMS. Let T : Y → Y

and ψ, ϕ : [0,∞) → [0,∞) be defined by T (x) = 1
6 , if x ∈ B else T (x) = 1 − x,

ϕ(t) = t
7 and ψ(t) = t. Finally, α : Y ×Y ×Y → [0,∞) given by α(x, y, z) = 1 when

x, y, z ∈ B or x = y = z, otherwise α(x, y, z) = 0. We have

ψ (α(x, y, z)S(Tx, Ty, Tz)) ≤ ψ (M(x, y, z))− ϕ (M(x, y, z)) ,

where

M(x, y, z) = max {S(x, y, z), S(x, Tx, Tx), S(y, Ty, Ty), S(z, Tz, Tz)} .
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We give a few cases.
Case I. If x = 1

4 , y = 1
5 and z = 1

6 . Then α(x, y, z) = 1, ψ(1) = 1, S
(
T 1

4 , T 1
5 , T 1

6

)
=

0.
Case II. If x = 1

4 , y = 1
7 and z = 1

10 , we have

S

(
1
6
,
1
6
,

9
10

)
=

∣∣∣∣
1
6
− 9

10

∣∣∣∣ +
∣∣∣∣
1
6
− 1

6

∣∣∣∣ =
11
15

,

M

(
1
4
,
1
7
,

1
10

)
= max

{
11
15

,
6
7
,
6
7
,
4
5

}
=

6
7
,

ψ(6
7) = 6

7 and ϕ(6
7) = 6

49 .
Case III. If x = 1

6 , y = 1
7 and z = 1

8 , we have

S

(
T

1
6
, T

1
7
, T

1
8

)
= S

(
1
6
,
1
6
,
1
6

)
= 0.

Case IV. If x = 1
7 , y = 1

7 and z = 1
7 , we have

S

(
T

1
y
, T

1
7
, T

1
y

)
= S

(
1
6
,
1
6
,
1
6

)
= 0.

Case V. If x = 1
10 , y = 1

11 and z = 1
12 , we have

S

(
T

1
10

, T
1
11

, T
1
12

)
= S

(
9
10

,
10
11

,
11
12

)
=

242
14520

,

and

M

(
1
10

,
1
11

,
1
12

)
= max

{
S

(
1
10

,
1
11

,
1
12

)
, S

(
1
10

,
9
10

,
9
10

)
,

S

(
1
11

,
10
11

,
10
11

)
, S

(
1
12

,
11
12

,
11
12

)}

=
{

242
14520

,
4
5
,

9
11

,
5
6

}
=

5
6
.

Then T and α satisfy all the condition of Corollary 2.6 and hence T has a unique
fixed point on Y that is x = 1

6 .
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