• Title/Summary/Keyword: Fixed Point

Search Result 2,725, Processing Time 0.024 seconds

COMPATIBLE MAPS OF TWO TYPES AND COMMON FIXED POINT THEOREMS ON INTUITIONISTIC FUZZY METRIC SPACE

  • Park, Jong-Seo
    • Honam Mathematical Journal
    • /
    • v.32 no.2
    • /
    • pp.283-298
    • /
    • 2010
  • In this paper, we introduce the concept of compatible mapping of type(${\alpha}$-1) and type(${\alpha}$-2), prove the some properties and common fixed point theorem for such maps in intuitionistic fuzzy metric space. Also, we give the example. Our research are an extension for the results of Kutukcu and Sharma[3] and Park et.al.[11].

FUZZY STABILITY OF A CUBIC-QUARTIC FUNCTIONAL EQUATION: A FIXED POINT APPROACH

  • Jang, Sun-Young;Park, Choon-Kil;Shin, Dong-Yun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.3
    • /
    • pp.491-503
    • /
    • 2011
  • Using the fixed point method, we prove the generalized Hyers-Ulam stability of the following cubic-quartic functional equation (0.1) f(2x + y) + f(2x - y) = 3f(x + y) + f(-x - y) + 3f(x - y) + f(y - x) + 18f(x) + 6f(-x) - 3f(y) - 3f(-y) in fuzzy Banach spaces.

A FIXED POINT APPROACH TO THE STABILITY OF QUARTIC LIE ∗-DERIVATIONS

  • Kang, Dongseung;Koh, Heejeong
    • Korean Journal of Mathematics
    • /
    • v.24 no.4
    • /
    • pp.587-600
    • /
    • 2016
  • We obtain the general solution of the functional equation $f(ax+y)-f(x-ay)+{\frac{1}{2}}a(a^2+1)f(x-y)+(a^4-1)f(y)={\frac{1}{2}}a(a^2+1)f(x+y)+(a^4-1)f(x)$ and prove the stability problem of the quartic Lie ${\ast}$-derivation by using a directed method and an alternative fixed point method.

A GENERAL FIXED POINT THEOREM IN FUZZY METRIC SPACES VIA AN IMPLICIT FUNCTION

  • Imdad, M.;Ali, Javid
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.591-603
    • /
    • 2008
  • We employ the notion of implicit functions to prove a general common fixed point theorem in fuzzy metric spaces besides adopting the idea of R-weak commutativity of type (P) in fuzzy setting. In process, several previously known results are deduced as special cases to our main result.

  • PDF

FIXED POINT THEOREMS, SECTION PROPERTIES AND MINIMAX INEQUALITIES ON K-G-CONVEX SPACES

  • Balaj, Mircea
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.387-395
    • /
    • 2002
  • In [11] Kim obtained fixed point theorems for maps defined on some “locally G-convex”subsets of a generalized convex space. Theorem 2 in Kim's article determines us to introduce, in this paper, the notion of K-G-convex space. In this framework we obtain fixed point theorems, section properties and minimax inequalities.

AN EXTENSION OF FIXED POINT THEOREMS CONCERNING CONE EXPANSION AND COMPRESSION AND ITS APPLICATION

  • Wang, Feng;Zhang, Fang
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.281-290
    • /
    • 2009
  • The famous Guo-Krasnosel'skii fixed point theorems concerning cone expansion and compression of norm type and order type are extended, respectively. As an application, the existence of multiple positive solutions for systems of Hammerstein type integral equations is considered.

AN EKELAND TYPE VARIATIONAL PRINCIPLE ON GAUGE SPACES WITH APPLICATIONS TO FIXED POINT THEORY, DROP THEORY AND COERCIVITY

  • Bae, Jong-Sook;Cho, Seong-Hoon;Kim, Jeong-Jin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.5
    • /
    • pp.1023-1032
    • /
    • 2011
  • In this paper, a new Ekeland type variational principle on gauge spaces is established. As applications, we give Caristi-Kirk type fixed point theorems on gauge spaces, and Dane$\check{s}$' drop theorem on seminormed spaces. Also, we show that the Palais-Smale condition implies coercivity on semi-normed spaces.