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A FIXED POINT APPROACH TO GENERALIZED
STABILITY

OF A MIXED TYPE FUNCTIONAL EQUATION
IN RANDOM NORMED SPACES

Kyoo-Hong Park and Yong-Soo Jung∗

Abstract. In this note, by using the fixed point method, we prove
the generalized stability for a mixed type functional equation in
random normed spaces of which the general solution is either cubic
or quadratic.

1. Introduction

The study of stability problems for functional equations originated

from a question of S.M. Ulam [23] concerning the stability of group

homomorphisms and it was affirmatively answered for Banach spaces

by D.H. Hyers [8]. Hyers’ theorem was generalized by T. Aoki [2] for

additive mappings and Th.M. Rassias for linear mappings [18].

Since then, a great deal of work has been done by a number of authors

(for instance, [4, 6, 19]).

Consider the functional equation

f(x + y) + f(x− y) = 2f(x) + 2f(y).
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The quadratic function f(x) = qx2 is a solution of this functional equa-

tion, and so one usually calls the above functional equation to be qua-

dratic [1, 5, 11, 12].

The Hyers-Ulam stability problem of the quadratic functional equa-

tion was first proved by F. Skof [22] for functions between a normed

space and a Banach space. Afterwards, her result was extended by

P.W. Cholewa [4] and S. Czerwik [5].

The cubic function f(x) = cx3 satisfies the functional equation

f(2x + y) + f(2x− y) = 2f(x + y) + 2f(x− y) + 12f(x). (1.1)

The functional equation (1.1) is said to be cubic and every solution of

the equation (1.1) is called a cubic function. The stability result of the

equation (1.1) was obtained by K.-W. Jun and H.-M. Kim [9].

Here, let us consider the following functional equation:

8f(x− 3y) + 24f(x + y) + f(8y) = 8[f(x + 3y) + 3f(x− y) + 2f(2y)].(1.2)

It is easy to see that all the real-valued functions f : R→ R of mixed type

of cubic and quadratic, i.e., either f(x) = cx3 or f(x) = qx2 satisfy the

functional equation (1.2). Hence, for the sake of convenience, we promise

that the equation (1.2) is called a mixed type functional equation of cubic

and quadratic and every solution of the equation (1.2) is said to be a

mixed type function of cubic and quadratic.

Almost all proofs in this topic used the Hyers’ direct method [8]. In

2003, V. Radu [17] proposed a new method for obtaining the existence

of exact solutions and error estimations, based on the fixed point alter-

native. This method has recently been used by many authors(see, e.g.,

[3, 15, 16]).

In this note, we provide the generalized stability problem for the

functional equation (1.2) in probabilistic setting by using the fixed point

approach as in [15].
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2. Preliminaries

For explicitly later use, we first state the following theorem:

Lemma 2.1 ([14]). (The alternative of fixed point) Suppose that

we are given a complete generalized metric space (Ω, d) and a strictly

contractive mapping J : Ω → Ω with Lipschitz constant L. Then, for

each given x ∈ Ω, either

d(Jnx, Jn+1x) = ∞ for all n ≥ 0,

or

There exists a natural number n0 such that

• d(Jnx, Jn+1x) < ∞ for all n ≥ n0;

• The sequence (Jnx) is convergent to a fixed point y∗ of J ;

• y∗ is the unique fixed point of J in the set ∆ = {y ∈ Ω : d(Jn0x, y) <

∞};
• d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ ∆.

A function H : R→ [0, 1] is called a distribution function if it is non-

decreasing and left-continuous, with supt∈RH(t) = 1 and inft∈RH(t) =

0. The class of all distribution functions H with H(0) = 0 is denoted by

D+. The class D+ is partially ordered by the usual pointwise ordering

of functions, that is, H ≤ G iff H(t) ≤ G(t) for all t ∈ R. The maximal

element for D+ in this order is the distribution function given by

ε0(t) =
{

0 if t ≤ 0,
1 if t > 0.

Definition 2.2 ([15]). A function T : [0, 1] × [0, 1] → [0, 1] is a

continuous triangular norm(briefly, a t-norm) if T satisfies the following

conditions:

(i) T is commutative and associative;

(ii) T is continuous;
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(iii) T (a, 1) = a for all a ∈ [0, 1]

(iv) T (a, b) ≤ T (c, d) whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1]

Three typical examples of continuous t-norms are T (a, b) = ab, T (a, b) =

max(a + b− 1, 0) and T (a, b) = min(a, b).

Definition 2.3. Let X be a real vector space, F be a mapping from

X into D+ (for any x ∈ X, F (x) is denoted by Fx) and T be a t-norm.

The triple (X,F, T ) is called a random normed space iff the following

conditions are satisfied:

(RN1) Fx = ε0 iff x = θ, the zero vector;

(RN2) Fαx(t) = Fx( t
|α|) for all α ∈ R, α 6= 0 and x ∈ X;

(RN3) Fx+y(t1 + t2) ≥ T (Fx(t1), Fy(t2)) for all x, y ∈ X and t1, t2 > 0.

Every normed space (X, ‖·‖) defines a random normed space (X,F, TM ),

where

Fu(t) =





t

t + ‖u‖ if t > 0,

0 if t ≤ 0

for all u ∈ X and TM is the minimum t-norm. This space is the induced

random normed space.

Definition 2.4. Let (X,F, T ) be a random normed space.

(i) A sequence {xn} in X is said to be convergent to x in X(we denote

limn→∞ xn = x) if limn→∞ Fxn−x(t) = 1 for all t > 0.

(ii) {xn} in X is called a Cauchy sequence if limm,n→∞ Fxm−xn(t) = 1

for all t > 0.

(iii) (X, F, T ) is said to be complete if every Cauchy sequence in X is

convergent.

The usual terminology, notations and conventions of the theory of

random normed spaces are due to [7, 20, 21].
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3. The Main Result

Let X be a real vector space and (Y, F, TM ) be a complete random

normed space, where TM (a, b) = min(a, b). Given a function f : X → Y ,

we set

Df(x, y) := 8f(x− 3y) + 24f(x + y) + f(8y)

−8[f(x + 3y) + 3f(x− y) + 2f(2y)]

for all x, y ∈ X. Let G be a mapping from X × R into [0, 1] such that

G(x, ·) ∈ D+ for all x ∈ X. Consider the set E = {g : X → Y : g(0) =

0} and the mapping dG defined on E × E by

dG(g, h) = inf{a ∈ (0,∞) : Fg(x)−h(x)(at) ≥ G(x, t) for all x ∈ X and t > 0},

where, as usual, inf ∅ = +∞. In [15], it was proved that dG is a complete

generalized metric on E.

Theorem 3.1. Let X be a real vector space and (Y, F, TM ) be a

complete random normed space. Suppose that Φ : X × X → D+ is a

symmetric mapping such that for each k = 3, 4, there exists αk ∈ (0, 2k)

satisfying

Φ(2k−2x, 2k−2y)(αkt) ≥ Φ(x, y)(t)(3.1)

for all x, y ∈ X and t > 0. If f : X → Y is a mapping with f(0) = 0

such that

FDf(x,y)(t) ≥ Φ(x, y)(t)(3.2)

for all x, y ∈ X and t > 0, then there exist a unique cubic function

C : X → Y and a unique quadratic function Q : X → Y satisfying the

equation (1.2) such that

Ff(x)−(C(x)+Q(x))(t) ≥ TM

(
Φ

(x

4
,
x

4

)(8− α3

2
t
)
, Φ

(
0,

x

2

)(16− α4

2
t
))

(3.3)
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F f(x)−f(−x)
2

−C(x)
(t) ≥ Φ

(x

4
,
x

4

)
((8− α3)t),(3.4)

and

F f(x)+f(−x)
2

−Q(x)
(t) ≥ Φ

(
0,

x

2

)
((16− α4)t)(3.5)

for all x ∈ X and t > 0.

Proof. Let g : X → Y be the function defined by g(x) = 1
2 [f(x)− f(−x)]

for all x ∈ X. Then we have g(0) = 0, g(−x) = −g(x) and

FDg(x,y)(t) ≥ Φ(x, y)(t)(3.6)

for all x, y ∈ X and t > 0. In fact, we observe that

FDg(x,y)(t) = F 1
2
[Df(x,y)−Df(−x,−y)](t)

= FDf(x,y)−Df(−x,−y)(2t)

= FDf(x,y)−Df(−x,−y)(t + t)

≥ TM (FDf(x,y)(t), F−Df(−x,−y)(t))

= TM (FDf(x,y)(t), FDf(−x,−y)(t))

for all x, y ∈ X and t > 0. That is,

FDg(x,y)(t) ≥ TM (FDf(x,y)(t), FDf(−x,−y)(t))

for all x, y ∈ X and t > 0. Since the identity FDg(x,y)(t) = FDg(−x,−y)(t)

holds for all x ∈ X and t > 0, it follows from the above inequality and

(3.2) that

FDg(x,y)(t) ≥ Φ(x, y)(t)

for all x, y ∈ X and t > 0.

Putting y = x in (3.6) yields

FDg(x,x)(t) ≥ Φ(x, x)(t),(3.7)

which, by setting x = x
4 in (3.7), gives

F
g(x)− g(2x)

8

(t) ≥ Φ
(x

4
,
x

4

)
(8t),
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for all x ∈ X and t > 0. Let

Φ
(x

4
,
x

4

)
(8t) = U(x, t)

for all x ∈ X and t > 0, where U is a mapping from X × R into [0, 1]

such that U(x, ·) ∈ D+ for all x ∈ X. Let E = {ρ : X → Y : ρ(0) = 0}.
As before, we see that the mapping dU defined on E ×E by

dU (ρ, λ) = inf{a ∈ (0,∞) : Fρ(x)−λ(x)(at) ≥ U(x, t) for all x ∈ X and t > 0},
is a complete generalized metric on E. Consider the linear mapping

J : E → E defined by Jρ(x) = 1
8ρ(2x) for all x ∈ X. It is easy to

see that J is a strictly contractive self-mapping of E with the Lipschitz

constant α3
8 .

Indeed, let ρ, λ in E be given such that dU (ρ, λ) < ε. Then we get

Fρ(x)−λ(x)(εt) ≥ U(x, t)

for all x ∈ X and t > 0. Hence we see that

FJρ(x)−Jλ(x)

(α3

8
εt

)
= Fρ(2x)−λ(2x)(α3εt) ≥ U(2x, α3t)

for all x ∈ X and t > 0. From (3.1) with k = 3, it follows that

Φ
(x

2
,
x

2

)
(α3t) ≥ Φ

(x

4
,
x

4

)
(t)

whence we get U(2x, α3t) ≥ U(x, t) for all x ∈ X and t > 0. Thus we

obtain

FJρ(x)−Jλ(x)

(α3

8
εt

)
≥ U(x, t),

that is,

dU (ρ, λ) < ε ⇒ dU (Jρ, Jλ) ≤ α3

8
ε.

This means that

dU (Jρ, Jλ) ≤ α3

8
dU (ρ, λ)

for all ρ, λ ∈ E.

Next, from F
g(x)− g(2x)

8

(t) ≥ U(x, t), it follows that

dU (g, Jg) ≤ 1
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So, using the fixed point alternative, we deduce the unique existence

of a fixed point C of J , i.e., the existence of a mapping C : X → Y such

that C(2x) = 8C(x) for all x ∈ X. Also,

dU (g, C) ≤ 1
1− L

dU (g, Jg)

implies the inequality

dU (g, C) ≤ 1
1− α3

8

from which we obtain

Fg(x)−C(x)

( 8
8− α3

t
)
≥ U(x, t)

for all x ∈ X and t > 0 (recall that U is left continuous in second

variable). This gives us that

Fg(x)−C(x)(t) ≥ U
(
x,

8− α3

8
t
)

for all x ∈ X and t > 0, whence we get the estimation (3.4). Since it

holds that

dU (u, v) < δ ⇒ Fu(x)−v(x)(t) ≥ U
(
x,

t

δ

)

for all x ∈ X and t > 0, from limn→∞ dU (Jng, C) = 0, it follows that

C(x) = lim
n→∞

g(2nx)
8n

(3.8)

for all x ∈ X.

We claim that the function C is cubic. Since TM is continuous, the

function z 7→ Fz is continuous (cf. [20, Chapter 12]). Therefore, for

t > 0,

FDC(x,y)(t) = lim
n→∞FDg(2nx,2ny)

8n
(t)

= lim
n→∞FDg(2nx,2ny)(8

nt)

≥ lim
n→∞Φ(x, y)

(( 8
α3

)n
t
)

= 1,

so that we have

FDC(x,y)(t) = 1
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for all t > 0 which gives DC(x, y) = 0, namely, C satisfies the functional

equation (1.2). Since the identity C(2x) = 8C(x) holds for all x ∈ X,

the equation (1.2) is reduced to the form

C(x + 3y) + 3C(x− y) = C(x− 3y) + 3C(x + y) + 48C(y)
(3.9)

for all x, y ∈ X. Let us replace x by −x in (3.8). Then it follows from

the oddness of g that C is odd, and hence interchanging x and y in (3.9)

yields

C(3x + y) + C(3x− y) = 3C(x + y) + 3C(x− y) + 48C(x).
(3.10)

Then it follows from [13] that C is cubic.

Let h : X → Y be the function defined by h(x) = 1
2 [f(x) + f(−x)]

for all x ∈ X. Then we have h(0) = 0, h(−x) = h(x) and

FDh(x,y)(t) ≥ Φ(x, y)(t)(3.11)

for all x, y ∈ X and t > 0. For, we have

FDh(x,y)(t) = F 1
2
[Df(x,y)+Df(−x,−y)](t)

= FDf(x,y)+Df(−x,−y)(2t)

= FDf(x,y)+Df(−x,−y)(t + t)

≥ TM (FDf(x,y)(t), FDf(−x,−y)(t))

for all x, y ∈ X and t > 0. Since the identity FDh(−x,−y)(t) = FDh(x,y)(t)

is valid for all x, y ∈ X and t > 0, the above inequality and (3.2) yield

FDh(x,y)(t) ≥ Φ(x, y)(t)

for all x, y ∈ X and t > 0.

By setting x = 0 in (3.12) and then letting y = x, we get

FDh(0,x)(t) ≥ Φ(0, x)(t),(3.12)
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Replacing x by x
2 in (3.13), we obtain

F
h(x)−h(4x)

16

(t) ≥ Φ
(
0,

x

2

)
(16t),

for all x ∈ X and t > 0. Let

Φ
(
0,

x

2

)
(16t) = V (x, t)

for all x ∈ X and t > 0, where V is a mapping from X × R into [0, 1]

such that V (x, ·) ∈ D+ for all x ∈ X.

We also consider the linear mapping S : E → E defined by S%(x) =
1
16%(4x) for all x ∈ X. It is immediate to see that S is a strictly contrac-

tive self-mapping of E with the Lipschitz constant α4
16 . Indeed, let %, η

in E be given such that dV (%, η) < ε, where dV is a complete generalized

metric on E. Then we get

F%(x)−η(x)(εt) ≥ V (x, t)

for all x ∈ X and t > 0. Hence we see that

FS%(x)−Sη(x)

(α4

16
εt

)
= F%(4x)−η(4x)(α4εt) ≥ V (4x, α4t)

for all x ∈ X and t > 0. From (3.1) with k = 4, we deduce that

Φ
(
0, 2x

)
(α4t) ≥ Φ

(
0,

x

2

)
(t)

which implies that V (4x, α4t) ≥ V (x, t) for all x ∈ X and t > 0. There-

fore we see that

FS%(x)−Sη(x)

(α4

16
εt

)
≥ V (x, t),

that is,

dV (%, η) < ε ⇒ dV (S%, Sη) ≤ α4

16
ε.

This means that

dV (S%, Sη) ≤ α4

16
dV (%, η)

for all %, η ∈ E. Next, from F
h(x)−h(4x)

16

(t) ≥ V (x, t), it follows that

dV (h, Sh) ≤ 1
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Again using the fixed point alternative, we arrive at the unique existence

of a fixed point Q of S, i.e., the existence of a mapping Q : X → Y such

that Q(4x) = 16Q(x) for all x ∈ X. Also,

dV (h,Q) ≤ 1
1− L

dV (h, Sh)

implies the inequality

dV (h,Q) ≤ 1
1− α4

16

from which we obtain

Fh(x)−Q(x)

( 16
16− α4

t
)
≥ V (x, t)

for all x ∈ X and t > 0 (recall that V is left continuous in second

variable). This means that

Fh(x)−Q(x)(t) ≥ V
(
x,

16− α4

16
t
)

for all x ∈ X and t > 0, whence we obtain the inequality (3.5). Since

we see that

dV (u, v) < δ ⇒ Fu(x)−v(x)(t) ≥ V
(
x,

t

δ

)

for all x ∈ X and t > 0, it follows from limn→∞ dV (Snh,Q) = 0 that

Q(x) = lim
n→∞

h(4nx)
16n

(3.13)

for all x ∈ X.

We will show that the function Q is quadratic. Since TM is continu-

ous, the function z 7→ Fz is continuous. Thus, for almost all t,

FDQ(x,y)(t) = lim
n→∞FDh(4nx,4ny)

16n
(t)

= lim
n→∞FDh(4nx,4ny)(16nt)

≥ lim
n→∞Φ(x, y)

((16
α4

)n
t
)

= 1,

so that we have

FDQ(x,y)(t) = 1
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for all t > 0 which gives DQ(x, y) = 0, that is, Q satisfies the functional

equation (1.2). Since the identity Q(4x) = 16Q(x) holds for all x ∈ X,

the equation (1.2) is reduced to the form

Q(x + 3y) + 3Q(x− y) = Q(x− 3y) + 3Q(x + y)
(3.14)

for all x, y ∈ X. Then it follows from [10] that Q is quadratic.

Since we have f(x) = g(x) + h(x) for all x ∈ X, we see that

Ff(x)−(C(x)+Q(x))(t) = F[g(x)−C(x)]+[h(x)−Q(x)](t)

= F[g(x)−C(x)]+[h(x)−Q(x)]

( t

2
+

t

2

)

≥ TM

(
Fg(x)−C(x)

( t

2

)
, Fh(x)−Q(x)

( t

2

))

for all x ∈ X and t > 0. Hence, from (3.4) and (3.5), we obtain the

inequality (3.3), i.e.,

Ff(x)−(C(x)+Q(x))(t) ≥ TM

(
Φ

(x

4
,
x

4

)(8− α3

2
t
)
, Φ

(
0,

x

2

)(16− α4

2
t
))

for all x ∈ X and t > 0. We complete the proof of the theorem.

Except for some modifications, we follow the process in the proof of

Theorem 3.1 to prove the next complementary case.

Theorem 3.2. Let X be a real vector space and (Y, F, TM ) be a

complete random normed space. Suppose that Φ : X × X → D+ is a

symmetric mapping such that for each k = 3, 4, there exists αk ∈ (0, 2k)

satisfying

Φ(22−kx, 22−ky)(αkt) ≥ Φ(x, y)(t)(3.15)

for all x, y ∈ X and t > 0. If f : X → Y is a mapping with f(0) = 0

such that

FDf(x,y)(t) ≥ Φ(x, y)(t)
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for all x, y ∈ X and t > 0, then there exist a unique cubic function

C : X → Y and a unique quadratic function Q : X → Y satisfying the

equation (1.2) such that

Ff(x)−(C(x)+Q(x))(t) ≥ TM

(
Φ

(x

4
,
x

4

)(8− α3

2
t
)
, Φ

(
0,

x

2

)(16− α4

2
t
))

F f(x)−f(−x)
2

−C(x)
(t) ≥ Φ

(x

4
,
x

4

)
((8− α3)t),

and

F f(x)+f(−x)
2

−Q(x)
(t) ≥ Φ

(
0,

x

2

)
((16− α4)t)

for all x ∈ X and t > 0.

Proof. Putting x = x
8 in (3.7), we have

Fg(x)−8g(x
2
)(t) ≥ Φ

(x

8
,
x

8

)( t

8

)
,

for all x ∈ X and t > 0. Let

Φ
(x

8
,
x

8

)( t

8

)
= U(x, t)

for all x ∈ X and t > 0, where U is a mapping from X × R into [0, 1]

such that U(x, ·) ∈ D+ for all x ∈ X. We define a mapping J : E → E

by Jρ(x) = 8ρ(x
2 ) for all x ∈ X. Then J is a strictly contractive self-

mapping of E with the Lipschitz constant 8α3.

Replacing x by x
8 in (3.13), we obtain

Fh(x)−16h(x
4
)(t) ≥ Φ

(
0,

x

8

)( t

16

)
,

for all x ∈ X and t > 0. Let

Φ
(
0,

x

8

)( t

16

)
= V (x, t)

for all x ∈ X and t > 0, where V is a mapping from X × R into [0, 1]

such that V (x, ·) ∈ D+ for all x ∈ X.

We also consider a mapping S : E → E defined by S%(x) = 16%(x
4 )

for all x ∈ X. It is immediate to see that S is a strictly contractive
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self-mapping of E with the Lipschitz constant 16α4. The rest is similar

to the proof of Theorem 3.1.

Remark 3.3. Let X and Y be normed spaces and (X,F, TM ) be the

induced random normed space. If

Φ(x, y)(t) :=
t

t + ϕ(x, y)

for all t > 0, where ϕ : X × X → [0,∞) be a function, then the con-

dition (3.1) holds iff for each k = 3, 4, ϕ(2k−2x, 2k−2y) ≤ αkϕ(x, y)

for all x, y ∈ X, while the condition (3.28) holds iff for each k = 3, 4,

ϕ(22−kx, 22−ky) ≤ αkϕ(x, y) for all x, y ∈ X. For instance, ϕ(x, y) =

θ (θ > 0) (resp. ϕ(x, y) = ‖x‖p + ‖y‖p (p < 2 or p > 2)) verifies the

conditions. Since (3.2) reduces to

‖Df(x, y)‖ ≤ ϕ(x, y)

for all x, y ∈ X, our theorems represent the stability in the sense of

Hyers [8] and Aoki [2].
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