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A FIXED POINT APPROACH TO GENERALIZED
STABILITY
OF A MIXED TYPE FUNCTIONAL EQUATION
IN RANDOM NORMED SPACES

Kyoo-HoNG PARK AND YONG-SOO JUNG*

Abstract. In this note, by using the fixed point method, we prove
the generalized stability for a mixed type functional equation in
random normed spaces of which the general solution is either cubic
or quadratic.

1. Introduction

The study of stability problems for functional equations originated
from a question of S.M. Ulam [23] concerning the stability of group
homomorphisms and it was affirmatively answered for Banach spaces
by D.H. Hyers [8]. Hyers’ theorem was generalized by T. Aoki [2] for
additive mappings and Th.M. Rassias for linear mappings [18].

Since then, a great deal of work has been done by a number of authors
(for instance, [4, 6, 19]).

Consider the functional equation

fle+y)+ flx—y) =2f(x) +2f(y).
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The quadratic function f(x) = gx? is a solution of this functional equa-
tion, and so one usually calls the above functional equation to be qua-
dratic [1, 5, 11, 12].

The Hyers-Ulam stability problem of the quadratic functional equa-
tion was first proved by F. Skof [22] for functions between a normed
space and a Banach space. Afterwards, her result was extended by
P.W. Cholewa [4] and S. Czerwik [5].

The cubic function f(x) = ca? satisfies the functional equation

f@Rr+y)+ f(2x —y) =2f(z+y)+2f(vr —y) +12f(z).  (1.1)

The functional equation (1.1) is said to be cubic and every solution of
the equation (1.1) is called a cubic function. The stability result of the
equation (1.1) was obtained by K.-W. Jun and H.-M. Kim [9].

Here, let us consider the following functional equation:

8f(x —3y) +24f(z +y) + f(8y) = 8[f(x + 3y) + 3f(z — y) + 2f(2y)](1.2)

It is easy to see that all the real-valued functions f : R — R of mixed type
of cubic and quadratic, i.e., either f(x) = cz® or f(z) = qa? satisfy the
functional equation (1.2). Hence, for the sake of convenience, we promise
that the equation (1.2) is called a mixed type functional equation of cubic
and quadratic and every solution of the equation (1.2) is said to be a
mixed type function of cubic and quadratic.

Almost all proofs in this topic used the Hyers’ direct method [8]. In
2003, V. Radu [17] proposed a new method for obtaining the existence
of exact solutions and error estimations, based on the fixed point alter-
native. This method has recently been used by many authors(see, e.g.,
[3, 15, 16]).

In this note, we provide the generalized stability problem for the
functional equation (1.2) in probabilistic setting by using the fixed point
approach as in [15].
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2. Preliminaries

For explicitly later use, we first state the following theorem:

Lemma 2.1 ([14]). (The alternative of fixed point) Suppose that
we are given a complete generalized metric space (2,d) and a strictly
contractive mapping J : 0 — € with Lipschitz constant L. Then, for

each given x € ), either
d(J"z, J" ) = oo for all n >0,

or
There exists a natural number ng such that
o d(J"x,J"x) < oo for all n > ny;
e The sequence (J"x) is convergent to a fixed point y* of J;
e y* is the unique fixed point of J in the set A = {y € Q : d(J™x,y) <
o0}

o d(y,y*) < ﬁd(y, Jy) for all y € A.

A function H : R — [0, 1] is called a distribution function if it is non-
decreasing and left-continuous, with sup,cp H(t) = 1 and infieg H(t) =
0. The class of all distribution functions H with H(0) = 0 is denoted by
D,. The class D, is partially ordered by the usual pointwise ordering
of functions, that is, H < G iff H(t) < G(t) for all t € R. The maximal
element for D, in this order is the distribution function given by

0 if t<0,
folt) = {1 it t> 0.

Definition 2.2 ([15]). A function 7" : [0,1] x [0,1] — [0,1] is a

continuous triangular norm(briefly, a ¢-norm) if 7" satisfies the following

conditions:

(i) T is commutative and associative;

(ii) T is continuous;
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(iii) T'(a,1) = a for all a € [0, 1]
(iv) T(a,b) < T(c,d) whenever a < ¢ and b < d for all a,b,¢c,d € [0,1]

Three typical examples of continuous ¢-norms are T'(a, b) = ab, T'(a,b) =

max(a+b—1,0) and T'(a,b) = min(a, b).

Definition 2.3. Let X be a real vector space, F' be a mapping from
X into Dy (for any x € X, F(z) is denoted by F,) and T be a t-norm.
The triple (X, F,T) is called a random normed space iff the following

conditions are satisfied:

(RN1) F, =gy iff x = 6, the zero vector;
(RN2) Fop(t) = Fp(i4) forall a € R, a # 0 and = € X;

la]

(RN3) Fypy(ti +t2) > T(Fy(t1), Fy(t2)) for all z,y € X and t1,t2 > 0.

Every normed space (X, ||-||) defines a random normed space (X, F, T),

where
t

Fu(t) = q t+ ]
0 if t<0

for all w € X and Ty is the minimum ¢-norm. This space is the induced

it ¢>0,

random normed space.

Definition 2.4. Let (X, F,T) be a random normed space.

(i) A sequence {x,} in X is said to be convergent to x in X (we denote
limy, 00 T, = @) if limy, 00 Fy, —(t) = 1 for all ¢t > 0.
(ii) {xn} in X is called a Cauchy sequence if limy, p—oo Fi,,—2, (1) =1
for all ¢ > 0.
(iii) (X, F,T) is said to be complete if every Cauchy sequence in X is

convergent.

The usual terminology, notations and conventions of the theory of

random normed spaces are due to [7, 20, 21].
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3. The Main Result

Let X be a real vector space and (Y, F,Tys) be a complete random
normed space, where Tys(a,b) = min(a,b). Given a function f: X — Y,

we set

Df(z,y) :=8f(x — 3y) +24f(z +y) + f(8y)
=8[f(z + 3y) +3f(x —y) +2f(2y)]

for all z,y € X. Let G be a mapping from X x R into [0, 1] such that
G(z,-) € D4 for all x € X. Consider theset E={g: X — Y :¢(0) =
0} and the mapping dg defined on E x E by

da(g,h) = inf{a € (0,00) : F

(z),h(z)(at) > G(x,t) forallz € X andt > 0},
where, as usual, inf ) = +o00. In [15], it was proved that dg is a complete

generalized metric on E.

Theorem 3.1. Let X be a real vector space and (Y, F,Tys) be a
complete random normed space. Suppose that ® : X x X — D, is a
symmetric mapping such that for each k = 3,4, there exists ay, € (0, 2’“)

satisfying

(3.1) ©(2° 22, 2" 2y) (axt) = @(z,y)(1)

for all z,y € X andt > 0. If f: X — Y is a mapping with f(0) =0
such that

(3.2) Ep () (t) = ®(z,y)(¢)

for all x,y € X and t > 0, then there exist a unique cubic function
C : X — Y and a unique quadratic function Q : X — Y satisfying the
equation (1.2) such that

(3.3)

P> Tu(e(55) (520 3(0.5) (5 4)
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xr T
(3.4) Fre)sca oy (t) = CI’(Z, Z) ((8 — as)t),
and
X
(3.5) Fiarsin_g(t) > @0, 5) ((16 — a)t)

for all x € X and t > 0.

Proof. Let g : X — Y be the function defined by g(z) = 3 [f(z) — f(—z)]
for all x € X. Then we have ¢g(0) =0, g(—x) = —g(x) and
(3.6) Fpg(ay) () = (z,y)(t)

for all z,y € X and ¢t > 0. In fact, we observe that

Fpgtey)(t) = Fipfay)-nf(—a,—y) 1)
= FDf(ay)-Df(~a,—y)(21)
= Fpf(a)-Df(~z,—y)(t +1)
> T (Fpfey)(t) F-pf(—a,—y)(1))
=Ty (EDf(ay)(): Fpp(—,—y) (1))

for all z,y € X and t > 0. That is,

FDg(ac,y) (t) > TM(FDf(m,y) (t)v FDf(fm,fy) (t))

for all #,y € X and t > 0. Since the identity Fpy(zy)(t) = Fpg(—z,—y) (t)
holds for all z € X and t > 0, it follows from the above inequality and
(3.2) that

FDg(:p,y) (t) > q)(l', y)(t)
for all z,y € X and t > 0.
Putting y = x in (3.6) yields
(37) FDg(m,m) (t) > (I)(J:7 .T)(t),

which, by setting z = 7 in (3.7), gives

r T
Fo gtz () 2 (3, ) (81),
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for all z € X and t > 0. Let

T
(b(Z’ Z)(&s) = U(x,1t)
for all z € X and ¢t > 0, where U is a mapping from X X R into [0, 1]
such that U(z,-) € Dy forallz € X. Let E={p: X — Y : p(0) = 0}.

As before, we see that the mapping dy defined on E x E by
du(p,\) = inf{a € (0,00) : Fjz)_r(a)(at) > U(z,t) for allz € X and t > 0},

is a complete generalized metric on E. Consider the linear mapping
J : E — FE defined by Jp(x) = %p(Zx) for all x € X. Tt is easy to
see that J is a strictly contractive self-mapping of E with the Lipschitz
constant .

Indeed, let p, A in E be given such that dy(p, ) < €. Then we get
Fp(m)—)\(x) (8t) > U(SU, t)
for all x € X and ¢t > 0. Hence we see that

(6%
Fip@) - (@3@) = Fyo0)-r22) (a3et) > U(22, ast)

for all z € X and ¢ > 0. From (3.1) with & = 3, it follows that
T T T x
(3. 3)(ast) = 2(3. 7))
whence we get U(2x, ast) > U(x,t) for all z € X and ¢t > 0. Thus we

obtain

a3
FJp(x)—J)\(z) (§5t> > U($, t)a
that is,

du(p,\) < € = dy(Jp, J\) < %e.
This means that
du(JTp. IN) < Fdu(p, )
for all p, A € E.

Next, from F g (t) > Uz, t), it follows that

()= %35
dy(g,Jg) <1
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So, using the fixed point alternative, we deduce the unique existence
of a fixed point C of J, i.e., the existence of a mapping C : X — Y such
that C(2z) = 8C(z) for all z € X. Also,

1
1-L

du(g,0C) < du(g,J9)
implies the inequality
1

_ a3
1 8

dU(Q? C) <

from which we obtain

Fy(z)—c() <8 t) > U(z,t)

— a3
for all x € X and ¢ > 0 (recall that U is left continuous in second

variable). This gives us that

8 — Qs
Fya)-c(o)(t) > Uz, =5 t)

for all z € X and t > 0, whence we get the estimation (3.4). Since it
holds that
t
dU(uvv) <é= Fu(:}:)—v(z) (t) > U(LL“, 5)

for all x € X and t > 0, from lim, . dy(J"g,C) = 0, it follows that

(3.8) C) = tim I27)

n—oo &N

for all x € X.
We claim that the function C' is cubic. Since Ths is continuous, the
function z +— F is continuous (cf. [20, Chapter 12]). Therefore, for

t>0,

Fpo(ay)(t) = lim F Dy(2"a.2"y) (t)

> oo ((2)') =1

so that we have

FDC’(Ly) (t) =1
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for all ¢ > 0 which gives DC'(z,y) = 0, namely, C satisfies the functional
equation (1.2). Since the identity C'(2z) = 8C(z) holds for all x € X,
the equation (1.2) is reduced to the form
(3.9)

C(z+3y) +3C(x —y) = C(x — 3y) + 3C(z +y) + 48C(y)

for all z,y € X. Let us replace by —z in (3.8). Then it follows from
the oddness of g that C' is odd, and hence interchanging = and y in (3.9)
yields
(3.10)

CBzr+y)+CBx—y)=3C(x+y)+3C(x—y)+48C(z).

Then it follows from [13] that C' is cubic.
Let h : X — Y be the function defined by h(z) = 5 [f(z) + f(—z)]
for all € X. Then we have h(0) = 0, h(—z) = h(z) and

(3.11) Fph(zy) (t) = ®(z,y)(t)
for all x,y € X and ¢t > 0. For, we have
Epna)(®) = Fipf(og+Df(—a—) (1)
= FDf(ay)+Df(~a.~y) (20)
= FDj(ay)+Df(~2,~y) (t+1)
> T (Fpfay) ) Fpf(—z,—y)(t))

for all z,y € X and ¢t > 0. Since the identity Fpp(—g —y)(t) = Fpp(ay) (t)
is valid for all z,y € X and t > 0, the above inequality and (3.2) yield

FDh(x,y) (t) > q)(x, y)(t)

for all z,y € X and ¢t > 0.
By setting = 0 in (3.12) and then letting y = x, we get

(312) FDh(O,a:) (t) > (I)(Ov l‘)(t)v
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Replacing x by § in (3.13), we obtain

T
Fy gyt (1) @(0,5)(160),

for all x € X and ¢t > 0. Let
z
c1>(0, 5)(1&) =V(z,t)

for all z € X and ¢t > 0, where V is a mapping from X X R into [0, 1]
such that V(z,-) € Dy for all z € X.

We also consider the linear mapping S : E — E defined by So(z) =
1—169(4x) for all x € X. It is immediate to see that S is a strictly contrac-
tive self-mapping of F with the Lipschitz constant 7¢. Indeed, let o, 7
in E be given such that dy (g,n) < €, where dy is a complete generalized

metric on E. Then we get
Fg(m)fn(:c) (et) > V((E,t)

for all z € X and ¢t > 0. Hence we see that
Oy
FSQ(m)—Sn(ac) (Eet) = F,Q(4a:)—7](4ac)(a4€t) > V(4l‘, Oé4t)

for all z € X and ¢ > 0. From (3.1) with k£ = 4, we deduce that

T
®(0,2z) (ast) > (0, 5)(t)
which implies that V (4z, aut) > V(x,t) for all z € X and t > 0. There-

fore we see that

Qg
FSQ(I)—Sn(I) (EEQ > V(l‘, t)a

that is,

dy(0.m) < € = dy(Se, Sn) < e

This means that
«o

for all g,n € E. Next, from F, _naa (t) > V(z,t), it follows that
16

(z)
dy(h,Sh) <1
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Again using the fixed point alternative, we arrive at the unique existence
of a fixed point Q) of S, i.e., the existence of a mapping @) : X — Y such
that Q(4x) = 16Q(x) for all z € X. Also,

1
v (h, Sh)

dV(h7 Q) S 1—

implies the inequality

from which we obtain

16
Futo)-ae) (15— o t) 2 V1)

for all x € X and ¢t > 0 (recall that V is left continuous in second

variable). This means that

16 — ay
Fuo)-qua)(t) 2 V (2. =31)

for all z € X and t > 0, whence we obtain the inequality (3.5). Since

we see that

t
dv(u,v) <= Fu(w)—’u(:c) (t) > V(x, g)

for all x € X and t > 0, it follows from lim,, . dy (S™h, Q) = 0 that

(3.13) Q) = lim A

n—oo 167

for all x € X.
We will show that the function @ is quadratic. Since T); is continu-

ous, the function z — F}, is continuous. Thus, for almost all ¢,

FpQay(t) = lim F DA ny) (t)

n—oo

= Hm Fpp(gng,any) (16™1)

> lim @(m,y)((Eylt) —1,

n—00 oy

so that we have

FDQ(x,y) (t) =1
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for all t > 0 which gives DQ(x,y) = 0, that is, @ satisfies the functional
equation (1.2). Since the identity Q(4z) = 16Q(z) holds for all z € X,
the equation (1.2) is reduced to the form

(3.14)
Q(z + 3y) +3Q(r —y) = Q(z — 3y) + 3Q(x + y)

for all z,y € X. Then it follows from [10] that @ is quadratic.
Since we have f(z) = g(z) + h(z) for all z € X, we see that

F(2)—(0(2)+Q()) (£) = Flg(z)—c(@)]+h(z)-Q()] ()

t t
= Flg@)-C(@)+[h(z)-Q() (5 + 5)

> Ty (Fg(x)—C(x) (%)7 Fh@)-Q(x) (%))

for all x € X and ¢ > 0. Hence, from (3.4) and (3.5), we obtain the
inequality (3.3), i.e.,

o2 T o5 (50, 20.5)(54)

for all x € X and t > 0. We complete the proof of the theorem. O

Except for some modifications, we follow the process in the proof of

Theorem 3.1 to prove the next complementary case.

Theorem 3.2. Let X be a real vector space and (Y, F,Ty;) be a
complete random normed space. Suppose that ® : X x X — D, is a
symmetric mapping such that for each k = 3,4, there exists oy, € (0, 2F)
satisfying

(3.15) <I>(22_kx,22_ky)(akt) > O(x,y)(t)

for all z,y € X andt > 0. If f: X — Y is a mapping with f(0) =0
such that

FDf(a:,y) (t) > (I)(CE, y)(t)
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for all x,y € X and t > 0, then there exist a unique cubic function
C : X — Y and a unique quadratic function Q : X — Y satisfying the
equation (1.2) such that

Fr@)-©@+Qe) () = T (@(%, %) (8 _20‘3 t)’ <I>(0, g) (16 ; ay t))

r T

Fia)—f-a t) > ®(—,—)((8 —a3z)t),
g () 2 B 7) (8~ as)t)

and

X

5) (16— au)t)

x —x >
Fiwisen o (t) > ‘I)(U, 5

for allx € X and t > 0.

Proof. Putting x = ¢ in (3.7), we have

Fy(a)—sg(2)(t) = @(g, %) (é)

for all z € X and ¢t > 0. Let
t
*(55)(5) = V@D

for all z € X and ¢t > 0, where U is a mapping from X x R into [0, 1]
such that U(zx,-) € D4 for all x € X. We define a mapping J : E — E
by Jp(x) = 8p(5) for all z € X. Then J is a strictly contractive self-
mapping of E with the Lipschitz constant 8as.

Replacing z by £ in (3.13), we obtain

Fh(z)-16n(2) (t) = ‘1>(0, %) (%),

for all z € X and ¢t > 0. Let

a0, %) (1%) = V(z,1)
for all z € X and ¢t > 0, where V is a mapping from X x R into [0, 1]
such that V(z,-) € Dy for all z € X.
We also consider a mapping S : £ — E defined by So(z) = 160(F)

for all x € X. It is immediate to see that S is a strictly contractive
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self-mapping of F with the Lipschitz constant 16ay. The rest is similar
to the proof of Theorem 3.1. O

Remark 3.3. Let X and Y be normed spaces and (X, F, Ty;) be the

induced random normed space. If

B, y) (1) = ——

Cttp(,y)
for all ¢ > 0, where ¢ : X x X — [0,00) be a function, then the con-

dition (3.1) holds iff for each k = 3,4, ¢(28722,22y) < arp(x,y)
for all z,y € X, while the condition (3.28) holds iff for each k& = 3,4,
©0(2%7F2,227Fy) < agp(x,y) for all z,y € X. For instance, ¢(x,y) =
6 (0 >0) (resp. o(z,y) = [|z|P+ ||y’ (p < 2 or p > 2)) verifies the

conditions. Since (3.2) reduces to

1D f (@, 9)ll < o(z,y)

for all z,y € X, our theorems represent the stability in the sense of
Hyers [8] and Aoki [2].
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