A FIXED POINT APPROACH TO GENERALIZED STABILITY
 OF A MIXED TYPE FUNCTIONAL EQUATION IN RANDOM NORMED SPACES

Kyoo-Hong Park and Yong-Soo Jung*

Abstract

In this note, by using the fixed point method, we prove the generalized stability for a mixed type functional equation in random normed spaces of which the general solution is either cubic or quadratic.

1. Introduction

The study of stability problems for functional equations originated from a question of S.M. Ulam [23] concerning the stability of group homomorphisms and it was affirmatively answered for Banach spaces by D.H. Hyers [8]. Hyers' theorem was generalized by T. Aoki [2] for additive mappings and Th.M. Rassias for linear mappings [18].

Since then, a great deal of work has been done by a number of authors (for instance, $[4,6,19]$).

Consider the functional equation

$$
f(x+y)+f(x-y)=2 f(x)+2 f(y)
$$

[^0]The quadratic function $f(x)=q x^{2}$ is a solution of this functional equation, and so one usually calls the above functional equation to be quadratic [1, 5, 11, 12].

The Hyers-Ulam stability problem of the quadratic functional equation was first proved by F. Skof [22] for functions between a normed space and a Banach space. Afterwards, her result was extended by P.W. Cholewa [4] and S. Czerwik [5].

The cubic function $f(x)=c x^{3}$ satisfies the functional equation

$$
\begin{equation*}
f(2 x+y)+f(2 x-y)=2 f(x+y)+2 f(x-y)+12 f(x) \tag{1.1}
\end{equation*}
$$

The functional equation (1.1) is said to be cubic and every solution of the equation (1.1) is called a cubic function. The stability result of the equation (1.1) was obtained by K.-W. Jun and H.-M. Kim [9].

Here, let us consider the following functional equation:
$8 f(x-3 y)+24 f(x+y)+f(8 y)=8[f(x+3 y)+3 f(x-y)+2 f(2 y)] .(1$
It is easy to see that all the real-valued functions $f: \mathbb{R} \rightarrow \mathbb{R}$ of mixed type of cubic and quadratic, i.e., either $f(x)=c x^{3}$ or $f(x)=q x^{2}$ satisfy the functional equation (1.2). Hence, for the sake of convenience, we promise that the equation (1.2) is called a mixed type functional equation of cubic and quadratic and every solution of the equation (1.2) is said to be a mixed type function of cubic and quadratic.

Almost all proofs in this topic used the Hyers' direct method [8]. In 2003, V. Radu [17] proposed a new method for obtaining the existence of exact solutions and error estimations, based on the fixed point alternative. This method has recently been used by many authors(see, e.g., $[3,15,16])$.

In this note, we provide the generalized stability problem for the functional equation (1.2) in probabilistic setting by using the fixed point approach as in [15].

2. Preliminaries

For explicitly later use, we first state the following theorem:

Lemma 2.1 ([14]). (The alternative of fixed point) Suppose that we are given a complete generalized metric space (Ω, d) and a strictly contractive mapping $J: \Omega \rightarrow \Omega$ with Lipschitz constant L. Then, for each given $x \in \Omega$, either

$$
d\left(J^{n} x, J^{n+1} x\right)=\infty \text { for all } n \geq 0
$$

or
There exists a natural number n_{0} such that

- $d\left(J^{n} x, J^{n+1} x\right)<\infty$ for all $n \geq n_{0}$;
- The sequence $\left(J^{n} x\right)$ is convergent to a fixed point y^{*} of J;
- y^{*} is the unique fixed point of J in the set $\Delta=\left\{y \in \Omega: d\left(J^{n_{0}} x, y\right)<\right.$ $\infty\}$;
- $d\left(y, y^{*}\right) \leq \frac{1}{1-L} d(y, J y)$ for all $y \in \Delta$.

A function $H: \mathbb{R} \rightarrow[0,1]$ is called a distribution function if it is nondecreasing and left-continuous, with $\sup _{t \in \mathbb{R}} H(t)=1$ and $\inf _{t \in \mathbb{R}} H(t)=$ 0 . The class of all distribution functions H with $H(0)=0$ is denoted by D_{+}. The class D_{+}is partially ordered by the usual pointwise ordering of functions, that is, $H \leq G$ iff $H(t) \leq G(t)$ for all $t \in \mathbb{R}$. The maximal element for D_{+}in this order is the distribution function given by

$$
\varepsilon_{0}(t)= \begin{cases}0 & \text { if } t \leq 0 \\ 1 & \text { if } t>0\end{cases}
$$

Definition 2.2 ([15]). A function $T:[0,1] \times[0,1] \rightarrow[0,1]$ is a continuous triangular norm(briefly, a t-norm) if T satisfies the following conditions:
(i) T is commutative and associative;
(ii) T is continuous;
(iii) $T(a, 1)=a$ for all $a \in[0,1]$
(iv) $T(a, b) \leq T(c, d)$ whenever $a \leq c$ and $b \leq d$ for all $a, b, c, d \in[0,1]$

Three typical examples of continuous t-norms are $T(a, b)=a b, T(a, b)=$ $\max (a+b-1,0)$ and $T(a, b)=\min (a, b)$.

Definition 2.3. Let X be a real vector space, F be a mapping from X into D_{+}(for any $x \in X, F(x)$ is denoted by F_{x}) and T be a t-norm. The triple (X, F, T) is called a random normed space iff the following conditions are satisfied:
(RN1) $F_{x}=\varepsilon_{0}$ iff $x=\theta$, the zero vector;
(RN2) $F_{\alpha x}(t)=F_{x}\left(\frac{t}{|\alpha|}\right)$ for all $\alpha \in \mathbb{R}, \alpha \neq 0$ and $x \in X$;
(RN3) $F_{x+y}\left(t_{1}+t_{2}\right) \geq T\left(F_{x}\left(t_{1}\right), F_{y}\left(t_{2}\right)\right)$ for all $x, y \in X$ and $t_{1}, t_{2}>0$.
Every normed space $(X,\|\cdot\|)$ defines a random normed space $\left(X, F, T_{M}\right)$, where

$$
F_{u}(t)=\left\{\begin{array}{cc}
\frac{t}{t+\|u\|} & \text { if } t>0 \\
0 & \text { if } t \leq 0
\end{array}\right.
$$

for all $u \in X$ and T_{M} is the minimum t-norm. This space is the induced random normed space.

Definition 2.4. Let (X, F, T) be a random normed space.
(i) A sequence $\left\{x_{n}\right\}$ in X is said to be convergent to x in X (we denote $\left.\lim _{n \rightarrow \infty} x_{n}=x\right)$ if $\lim _{n \rightarrow \infty} F_{x_{n}-x}(t)=1$ for all $t>0$.
(ii) $\left\{x_{n}\right\}$ in X is called a Cauchy sequence if $\lim _{m, n \rightarrow \infty} F_{x_{m}-x_{n}}(t)=1$ for all $t>0$.
(iii) (X, F, T) is said to be complete if every Cauchy sequence in X is convergent.

The usual terminology, notations and conventions of the theory of random normed spaces are due to $[7,20,21]$.

3. The Main Result

Let X be a real vector space and $\left(Y, F, T_{M}\right)$ be a complete random normed space, where $T_{M}(a, b)=\min (a, b)$. Given a function $f: X \rightarrow Y$, we set

$$
\begin{aligned}
D f(x, y) & :=8 f(x-3 y)+24 f(x+y)+f(8 y) \\
& -8[f(x+3 y)+3 f(x-y)+2 f(2 y)]
\end{aligned}
$$

for all $x, y \in X$. Let G be a mapping from $X \times \mathbb{R}$ into $[0,1]$ such that $G(x, \cdot) \in D_{+}$for all $x \in X$. Consider the set $E=\{g: X \rightarrow Y: g(0)=$ $0\}$ and the mapping d_{G} defined on $E \times E$ by
$d_{G}(g, h)=\inf \left\{a \in(0, \infty): F_{g(x)-h(x)}(a t) \geq G(x, t)\right.$ for all $x \in X$ and $\left.t>0\right\}$,
where, as usual, $\inf \emptyset=+\infty$. In [15], it was proved that d_{G} is a complete generalized metric on E.

Theorem 3.1. Let X be a real vector space and $\left(Y, F, T_{M}\right)$ be a complete random normed space. Suppose that $\Phi: X \times X \rightarrow D_{+}$is a symmetric mapping such that for each $k=3$, 4, there exists $\alpha_{k} \in\left(0,2^{k}\right)$ satisfying

$$
\begin{equation*}
\Phi\left(2^{k-2} x, 2^{k-2} y\right)\left(\alpha_{k} t\right) \geq \Phi(x, y)(t) \tag{3.1}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$. If $f: X \rightarrow Y$ is a mapping with $f(0)=0$ such that

$$
\begin{equation*}
F_{D f(x, y)}(t) \geq \Phi(x, y)(t) \tag{3.2}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$, then there exist a unique cubic function $C: X \rightarrow Y$ and a unique quadratic function $Q: X \rightarrow Y$ satisfying the equation (1.2) such that

$$
\begin{equation*}
F_{f(x)-(C(x)+Q(x))}(t) \geq T_{M}\left(\Phi\left(\frac{x}{4}, \frac{x}{4}\right)\left(\frac{8-\alpha_{3}}{2} t\right), \Phi\left(0, \frac{x}{2}\right)\left(\frac{16-\alpha_{4}}{2} t\right)\right) \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
F_{\frac{f(x)-f(-x)}{2}-C(x)}(t) \geq \Phi\left(\frac{x}{4}, \frac{x}{4}\right)\left(\left(8-\alpha_{3}\right) t\right) \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{\frac{f(x)+f(-x)}{2}-Q(x)}(t) \geq \Phi\left(0, \frac{x}{2}\right)\left(\left(16-\alpha_{4}\right) t\right) \tag{3.5}
\end{equation*}
$$

for all $x \in X$ and $t>0$.

Proof. Let $g: X \rightarrow Y$ be the function defined by $g(x)=\frac{1}{2}[f(x)-f(-x)]$ for all $x \in X$. Then we have $g(0)=0, g(-x)=-g(x)$ and

$$
\begin{equation*}
F_{D g(x, y)}(t) \geq \Phi(x, y)(t) \tag{3.6}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$. In fact, we observe that

$$
\begin{aligned}
F_{D g(x, y)}(t) & =F_{\frac{1}{2}[D f(x, y)-D f(-x,-y)]}(t) \\
& =F_{D f(x, y)-D f(-x,-y)}(2 t) \\
& =F_{D f(x, y)-D f(-x,-y)}(t+t) \\
& \geq T_{M}\left(F_{D f(x, y)}(t), F_{-D f(-x,-y)}(t)\right) \\
& =T_{M}\left(F_{D f(x, y)}(t), F_{D f(-x,-y)}(t)\right)
\end{aligned}
$$

for all $x, y \in X$ and $t>0$. That is,

$$
F_{D g(x, y)}(t) \geq T_{M}\left(F_{D f(x, y)}(t), F_{D f(-x,-y)}(t)\right)
$$

for all $x, y \in X$ and $t>0$. Since the identity $F_{D g(x, y)}(t)=F_{D g(-x,-y)}(t)$ holds for all $x \in X$ and $t>0$, it follows from the above inequality and (3.2) that

$$
F_{D g(x, y)}(t) \geq \Phi(x, y)(t)
$$

for all $x, y \in X$ and $t>0$.
Putting $y=x$ in (3.6) yields

$$
\begin{equation*}
F_{D g(x, x)}(t) \geq \Phi(x, x)(t) \tag{3.7}
\end{equation*}
$$

which, by setting $x=\frac{x}{4}$ in (3.7), gives

$$
F_{g(x)-\frac{g(2 x)}{8}}(t) \geq \Phi\left(\frac{x}{4}, \frac{x}{4}\right)(8 t),
$$

for all $x \in X$ and $t>0$. Let

$$
\Phi\left(\frac{x}{4}, \frac{x}{4}\right)(8 t)=U(x, t)
$$

for all $x \in X$ and $t>0$, where U is a mapping from $X \times \mathbb{R}$ into $[0,1]$ such that $U(x, \cdot) \in D_{+}$for all $x \in X$. Let $E=\{\rho: X \rightarrow Y: \rho(0)=0\}$. As before, we see that the mapping d_{U} defined on $E \times E$ by $d_{U}(\rho, \lambda)=\inf \left\{a \in(0, \infty): F_{\rho(x)-\lambda(x)}(a t) \geq U(x, t)\right.$ for all $x \in X$ and $\left.t>0\right\}$, is a complete generalized metric on E. Consider the linear mapping $J: E \rightarrow E$ defined by $J \rho(x)=\frac{1}{8} \rho(2 x)$ for all $x \in X$. It is easy to see that J is a strictly contractive self-mapping of E with the Lipschitz constant $\frac{\alpha_{3}}{8}$.

Indeed, let ρ, λ in E be given such that $d_{U}(\rho, \lambda)<\varepsilon$. Then we get

$$
F_{\rho(x)-\lambda(x)}(\varepsilon t) \geq U(x, t)
$$

for all $x \in X$ and $t>0$. Hence we see that

$$
F_{J \rho(x)-J \lambda(x)}\left(\frac{\alpha_{3}}{8} \varepsilon t\right)=F_{\rho(2 x)-\lambda(2 x)}\left(\alpha_{3} \varepsilon t\right) \geq U\left(2 x, \alpha_{3} t\right)
$$

for all $x \in X$ and $t>0$. From (3.1) with $k=3$, it follows that

$$
\Phi\left(\frac{x}{2}, \frac{x}{2}\right)\left(\alpha_{3} t\right) \geq \Phi\left(\frac{x}{4}, \frac{x}{4}\right)(t)
$$

whence we get $U\left(2 x, \alpha_{3} t\right) \geq U(x, t)$ for all $x \in X$ and $t>0$. Thus we obtain

$$
F_{J \rho(x)-J \lambda(x)}\left(\frac{\alpha_{3}}{8} \varepsilon t\right) \geq U(x, t)
$$

that is,

$$
d_{U}(\rho, \lambda)<\varepsilon \Rightarrow d_{U}(J \rho, J \lambda) \leq \frac{\alpha_{3}}{8} \varepsilon .
$$

This means that

$$
d_{U}(J \rho, J \lambda) \leq \frac{\alpha_{3}}{8} d_{U}(\rho, \lambda)
$$

for all $\rho, \lambda \in E$.
Next, from $F_{g(x)-\frac{g(2 x)}{8}}(t) \geq U(x, t)$, it follows that

$$
d_{U}(g, J g) \leq 1
$$

So, using the fixed point alternative, we deduce the unique existence of a fixed point C of J, i.e., the existence of a mapping $C: X \rightarrow Y$ such that $C(2 x)=8 C(x)$ for all $x \in X$. Also,

$$
d_{U}(g, C) \leq \frac{1}{1-L} d_{U}(g, J g)
$$

implies the inequality

$$
d_{U}(g, C) \leq \frac{1}{1-\frac{\alpha_{3}}{8}}
$$

from which we obtain

$$
F_{g(x)-C(x)}\left(\frac{8}{8-\alpha_{3}} t\right) \geq U(x, t)
$$

for all $x \in X$ and $t>0$ (recall that U is left continuous in second variable). This gives us that

$$
F_{g(x)-C(x)}(t) \geq U\left(x, \frac{8-\alpha_{3}}{8} t\right)
$$

for all $x \in X$ and $t>0$, whence we get the estimation (3.4). Since it holds that

$$
d_{U}(u, v)<\delta \Rightarrow F_{u(x)-v(x)}(t) \geq U\left(x, \frac{t}{\delta}\right)
$$

for all $x \in X$ and $t>0$, from $\lim _{n \rightarrow \infty} d_{U}\left(J^{n} g, C\right)=0$, it follows that

$$
\begin{equation*}
C(x)=\lim _{n \rightarrow \infty} \frac{g\left(2^{n} x\right)}{8^{n}} \tag{3.8}
\end{equation*}
$$

for all $x \in X$.
We claim that the function C is cubic. Since T_{M} is continuous, the function $z \mapsto F_{z}$ is continuous (cf. [20, Chapter 12]). Therefore, for $t>0$,

$$
\begin{aligned}
F_{D C(x, y)}(t) & =\lim _{n \rightarrow \infty} F_{\frac{D g\left(2^{n} x, 2^{n} y\right)}{8^{n}}}(t) \\
& =\lim _{n \rightarrow \infty} F_{D g\left(2^{n} x, 2^{n} y\right)}\left(8^{n} t\right) \\
& \geq \lim _{n \rightarrow \infty} \Phi(x, y)\left(\left(\frac{8}{\alpha_{3}}\right)^{n} t\right)=1
\end{aligned}
$$

so that we have

$$
F_{D C(x, y)}(t)=1
$$

for all $t>0$ which gives $D C(x, y)=0$, namely, C satisfies the functional equation (1.2). Since the identity $C(2 x)=8 C(x)$ holds for all $x \in X$, the equation (1.2) is reduced to the form

$$
\begin{equation*}
C(x+3 y)+3 C(x-y)=C(x-3 y)+3 C(x+y)+48 C(y) \tag{3.9}
\end{equation*}
$$

for all $x, y \in X$. Let us replace x by $-x$ in (3.8). Then it follows from the oddness of g that C is odd, and hence interchanging x and y in (3.9) yields

$$
\begin{equation*}
C(3 x+y)+C(3 x-y)=3 C(x+y)+3 C(x-y)+48 C(x) . \tag{3.10}
\end{equation*}
$$

Then it follows from [13] that C is cubic.
Let $h: X \rightarrow Y$ be the function defined by $h(x)=\frac{1}{2}[f(x)+f(-x)]$ for all $x \in X$. Then we have $h(0)=0, h(-x)=h(x)$ and

$$
\begin{equation*}
F_{D h(x, y)}(t) \geq \Phi(x, y)(t) \tag{3.11}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$. For, we have

$$
\begin{aligned}
F_{D h(x, y)}(t) & =F_{\frac{1}{2}[D f(x, y)+D f(-x,-y)]}(t) \\
& =F_{D f(x, y)+D f(-x,-y)}(2 t) \\
& =F_{D f(x, y)+D f(-x,-y)}(t+t) \\
& \geq T_{M}\left(F_{D f(x, y)}(t), F_{D f(-x,-y)}(t)\right)
\end{aligned}
$$

for all $x, y \in X$ and $t>0$. Since the identity $F_{D h(-x,-y)}(t)=F_{D h(x, y)}(t)$ is valid for all $x, y \in X$ and $t>0$, the above inequality and (3.2) yield

$$
F_{D h(x, y)}(t) \geq \Phi(x, y)(t)
$$

for all $x, y \in X$ and $t>0$.
By setting $x=0$ in (3.12) and then letting $y=x$, we get

$$
\begin{equation*}
F_{D h(0, x)}(t) \geq \Phi(0, x)(t), \tag{3.12}
\end{equation*}
$$

Replacing x by $\frac{x}{2}$ in (3.13), we obtain

$$
F_{h(x)-\frac{h(4 x)}{16}}(t) \geq \Phi\left(0, \frac{x}{2}\right)(16 t),
$$

for all $x \in X$ and $t>0$. Let

$$
\Phi\left(0, \frac{x}{2}\right)(16 t)=V(x, t)
$$

for all $x \in X$ and $t>0$, where V is a mapping from $X \times \mathbb{R}$ into $[0,1]$ such that $V(x, \cdot) \in D_{+}$for all $x \in X$.

We also consider the linear mapping $S: E \rightarrow E$ defined by $S \varrho(x)=$ $\frac{1}{16} \varrho(4 x)$ for all $x \in X$. It is immediate to see that S is a strictly contractive self-mapping of E with the Lipschitz constant $\frac{\alpha_{4}}{16}$. Indeed, let ϱ, η in E be given such that $d_{V}(\varrho, \eta)<\epsilon$, where d_{V} is a complete generalized metric on E. Then we get

$$
F_{\varrho(x)-\eta(x)}(\epsilon t) \geq V(x, t)
$$

for all $x \in X$ and $t>0$. Hence we see that

$$
F_{S \varrho(x)-S \eta(x)}\left(\frac{\alpha_{4}}{16} \epsilon t\right)=F_{\varrho(4 x)-\eta(4 x)}\left(\alpha_{4} \epsilon t\right) \geq V\left(4 x, \alpha_{4} t\right)
$$

for all $x \in X$ and $t>0$. From (3.1) with $k=4$, we deduce that

$$
\Phi(0,2 x)\left(\alpha_{4} t\right) \geq \Phi\left(0, \frac{x}{2}\right)(t)
$$

which implies that $V\left(4 x, \alpha_{4} t\right) \geq V(x, t)$ for all $x \in X$ and $t>0$. Therefore we see that

$$
F_{S \varrho(x)-S \eta(x)}\left(\frac{\alpha_{4}}{16} \epsilon t\right) \geq V(x, t)
$$

that is,

$$
d_{V}(\varrho, \eta)<\epsilon \Rightarrow d_{V}(S \varrho, S \eta) \leq \frac{\alpha_{4}}{16} \epsilon
$$

This means that

$$
d_{V}(S \varrho, S \eta) \leq \frac{\alpha_{4}}{16} d_{V}(\varrho, \eta)
$$

for all $\varrho, \eta \in E$. Next, from $F_{h(x)-\frac{h(4 x)}{16}}(t) \geq V(x, t)$, it follows that

$$
d_{V}(h, S h) \leq 1
$$

Again using the fixed point alternative, we arrive at the unique existence of a fixed point Q of S, i.e., the existence of a mapping $Q: X \rightarrow Y$ such that $Q(4 x)=16 Q(x)$ for all $x \in X$. Also,

$$
d_{V}(h, Q) \leq \frac{1}{1-L} d_{V}(h, S h)
$$

implies the inequality

$$
d_{V}(h, Q) \leq \frac{1}{1-\frac{\alpha_{4}}{16}}
$$

from which we obtain

$$
F_{h(x)-Q(x)}\left(\frac{16}{16-\alpha_{4}} t\right) \geq V(x, t)
$$

for all $x \in X$ and $t>0$ (recall that V is left continuous in second variable). This means that

$$
F_{h(x)-Q(x)}(t) \geq V\left(x, \frac{16-\alpha_{4}}{16} t\right)
$$

for all $x \in X$ and $t>0$, whence we obtain the inequality (3.5). Since we see that

$$
d_{V}(u, v)<\delta \Rightarrow F_{u(x)-v(x)}(t) \geq V\left(x, \frac{t}{\delta}\right)
$$

for all $x \in X$ and $t>0$, it follows from $\lim _{n \rightarrow \infty} d_{V}\left(S^{n} h, Q\right)=0$ that

$$
\begin{equation*}
Q(x)=\lim _{n \rightarrow \infty} \frac{h\left(4^{n} x\right)}{16^{n}} \tag{3.13}
\end{equation*}
$$

for all $x \in X$.
We will show that the function Q is quadratic. Since T_{M} is continuous, the function $z \mapsto F_{z}$ is continuous. Thus, for almost all t,

$$
\begin{aligned}
F_{D Q(x, y)}(t) & =\lim _{n \rightarrow \infty} F_{\frac{D h\left(4^{n} x, 4^{n} y\right)}{16^{n}}}(t) \\
& =\lim _{n \rightarrow \infty} F_{D h\left(4^{n} x, 4^{n} y\right)}\left(16^{n} t\right) \\
& \geq \lim _{n \rightarrow \infty} \Phi(x, y)\left(\left(\frac{16}{\alpha_{4}}\right)^{n} t\right)=1
\end{aligned}
$$

so that we have

$$
F_{D Q(x, y)}(t)=1
$$

for all $t>0$ which gives $D Q(x, y)=0$, that is, Q satisfies the functional equation (1.2). Since the identity $Q(4 x)=16 Q(x)$ holds for all $x \in X$, the equation (1.2) is reduced to the form

$$
\begin{equation*}
Q(x+3 y)+3 Q(x-y)=Q(x-3 y)+3 Q(x+y) \tag{3.14}
\end{equation*}
$$

for all $x, y \in X$. Then it follows from [10] that Q is quadratic.
Since we have $f(x)=g(x)+h(x)$ for all $x \in X$, we see that

$$
\begin{aligned}
F_{f(x)-(C(x)+Q(x))}(t) & =F_{[g(x)-C(x)]+[h(x)-Q(x)]}(t) \\
& =F_{[g(x)-C(x)]+[h(x)-Q(x)]}\left(\frac{t}{2}+\frac{t}{2}\right) \\
& \geq T_{M}\left(F_{g(x)-C(x)}\left(\frac{t}{2}\right), F_{h(x)-Q(x)}\left(\frac{t}{2}\right)\right)
\end{aligned}
$$

for all $x \in X$ and $t>0$. Hence, from (3.4) and (3.5), we obtain the inequality (3.3), i.e.,

$$
F_{f(x)-(C(x)+Q(x))}(t) \geq T_{M}\left(\Phi\left(\frac{x}{4}, \frac{x}{4}\right)\left(\frac{8-\alpha_{3}}{2} t\right), \Phi\left(0, \frac{x}{2}\right)\left(\frac{16-\alpha_{4}}{2} t\right)\right)
$$

for all $x \in X$ and $t>0$. We complete the proof of the theorem.

Except for some modifications, we follow the process in the proof of Theorem 3.1 to prove the next complementary case.

Theorem 3.2. Let X be a real vector space and $\left(Y, F, T_{M}\right)$ be a complete random normed space. Suppose that $\Phi: X \times X \rightarrow D_{+}$is a symmetric mapping such that for each $k=3,4$, there exists $\alpha_{k} \in\left(0,2^{k}\right)$ satisfying

$$
\begin{equation*}
\Phi\left(2^{2-k} x, 2^{2-k} y\right)\left(\alpha_{k} t\right) \geq \Phi(x, y)(t) \tag{3.15}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$. If $f: X \rightarrow Y$ is a mapping with $f(0)=0$ such that

$$
F_{D f(x, y)}(t) \geq \Phi(x, y)(t)
$$

for all $x, y \in X$ and $t>0$, then there exist a unique cubic function $C: X \rightarrow Y$ and a unique quadratic function $Q: X \rightarrow Y$ satisfying the equation (1.2) such that

$$
\begin{gathered}
F_{f(x)-(C(x)+Q(x))}(t) \geq T_{M}\left(\Phi\left(\frac{x}{4}, \frac{x}{4}\right)\left(\frac{8-\alpha_{3}}{2} t\right), \Phi\left(0, \frac{x}{2}\right)\left(\frac{16-\alpha_{4}}{2} t\right)\right) \\
F_{\frac{f(x)-f(-x)}{2}-C(x)}(t) \geq \Phi\left(\frac{x}{4}, \frac{x}{4}\right)\left(\left(8-\alpha_{3}\right) t\right),
\end{gathered}
$$

and

$$
F_{\frac{f(x)+f(-x)}{2}-Q(x)}(t) \geq \Phi\left(0, \frac{x}{2}\right)\left(\left(16-\alpha_{4}\right) t\right)
$$

for all $x \in X$ and $t>0$.
Proof. Putting $x=\frac{x}{8}$ in (3.7), we have

$$
F_{g(x)-8 g\left(\frac{x}{2}\right)}(t) \geq \Phi\left(\frac{x}{8}, \frac{x}{8}\right)\left(\frac{t}{8}\right)
$$

for all $x \in X$ and $t>0$. Let

$$
\Phi\left(\frac{x}{8}, \frac{x}{8}\right)\left(\frac{t}{8}\right)=U(x, t)
$$

for all $x \in X$ and $t>0$, where U is a mapping from $X \times \mathbb{R}$ into $[0,1]$ such that $U(x, \cdot) \in D_{+}$for all $x \in X$. We define a mapping $J: E \rightarrow E$ by $J \rho(x)=8 \rho\left(\frac{x}{2}\right)$ for all $x \in X$. Then J is a strictly contractive selfmapping of E with the Lipschitz constant $8 \alpha_{3}$.

Replacing x by $\frac{x}{8}$ in (3.13), we obtain

$$
F_{h(x)-16 h\left(\frac{x}{4}\right)}(t) \geq \Phi\left(0, \frac{x}{8}\right)\left(\frac{t}{16}\right),
$$

for all $x \in X$ and $t>0$. Let

$$
\Phi\left(0, \frac{x}{8}\right)\left(\frac{t}{16}\right)=V(x, t)
$$

for all $x \in X$ and $t>0$, where V is a mapping from $X \times \mathbb{R}$ into $[0,1]$ such that $V(x, \cdot) \in D_{+}$for all $x \in X$.

We also consider a mapping $S: E \rightarrow E$ defined by $S \varrho(x)=16 \varrho\left(\frac{x}{4}\right)$ for all $x \in X$. It is immediate to see that S is a strictly contractive
self-mapping of E with the Lipschitz constant $16 \alpha_{4}$. The rest is similar to the proof of Theorem 3.1.

Remark 3.3. Let X and Y be normed spaces and $\left(X, F, T_{M}\right)$ be the induced random normed space. If

$$
\Phi(x, y)(t):=\frac{t}{t+\varphi(x, y)}
$$

for all $t>0$, where $\varphi: X \times X \rightarrow[0, \infty)$ be a function, then the condition (3.1) holds iff for each $k=3,4, \varphi\left(2^{k-2} x, 2^{k-2} y\right) \leq \alpha_{k} \varphi(x, y)$ for all $x, y \in X$, while the condition (3.28) holds iff for each $k=3,4$, $\varphi\left(2^{2-k} x, 2^{2-k} y\right) \leq \alpha_{k} \varphi(x, y)$ for all $x, y \in X$. For instance, $\varphi(x, y)=$ $\theta(\theta>0) \quad\left(\operatorname{resp} . \varphi(x, y)=\|x\|^{p}+\|y\|^{p}(p<2\right.$ or $\left.p>2)\right)$ verifies the conditions. Since (3.2) reduces to

$$
\|D f(x, y)\| \leq \varphi(x, y)
$$

for all $x, y \in X$, our theorems represent the stability in the sense of Hyers [8] and Aoki [2].

References

[1] J. Aczél and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ. Press, 1989.
[2] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66.
[3] L. Cădariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Ineq. Pure Appl. Math., 4(1) (2003), Article 4, 7 pp.
[4] P.W. Cholewa, Remarks on the stability of functional equations, Aequationes Math., 27 (1984), 76-86.
[5] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, 62 (1992), 59-64.
[6] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias Stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.
[7] O. Hadžić and E. Pap, Fixed point theory in probabilistic metric spaces, Mathematics and it applications, Kluwer Academic Publishers, Dordrecht, The Netherlands 536 (2001).
[8] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci., 27 (1941), 222-224.
[9] K.-W. Jun and H.-M. Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl., 274(2) (2002), 867-878.
[10] _, On the Hyers-Ulam stability of a generalized quadratic and additive functional equation, Bull. Korean Math. Soc., 42(1) (2005), 133-148.
[11] S.-M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl., 222 (1998), 126-137.
[12] Pl. Kannappan, Quadratic functional equation and inner product spaces, Results Math., 27 (1995), 368-372.
[13] H.-M. Kim and I.-S. Chang, On the Hyers-Ulam stability of an Euler-Lagrange type cubic functional equation, J. Comput. Anal. Appl., 7(1) (2005), 21-33.
[14] B. Margolis and J.B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 126, 74 (1968), 305-309.
[15] D. Mihet and V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl., 343(1) (2008), 567-572.
[16] M. Mirzavaziri and M.S. Moslehian, A fixed point approach to stability of a quadratic equation, Bull Braz. Math. Soc., 72 (2006), 361-376.
[17] V. Radu, The fixed point alternative and the stability of functional equations, Sem. Fixed Point Theory 4(1), (2003), 91-96.
[18] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.
[19] Th.M. Rassias (Ed.), "Functional Equations and inequalities", Kluwer Academic, Dordrecht/ Boston/ London, 2000.
[20] B. Schweizer and A. Sklar, Probabilistic metric spaces, Noth-Holland Series in Probability and Applied Mathematics, North-Holland, New York, NY, USA (1983).
[21] A.N. Šerstnev, On the concept of a stochastic normalized space, Doklady Akademii Nauk SSSR, 149 (1963) (Russian), 280-283.
[22] F. Skof, Proprietà locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, 53 (1983), 113-129.
[23] S.M. Ulam, Problems in Modern Mathematics, (1960) Chap. VI, Science ed., Wiley, New York.

Kyoo-Hong Park

Department of Mathematics Education,
Seowon University,
Cheongju, Chungbuk 361-742, Korea
E-mail: parkkh@seowon.ac.kr
Yong-Soo Jung
Department of Mathematics, Sun Moon University, Asan, Chungnam 336-708, Korea
E-mail: ysjung@sunmoon.ac.kr

[^0]: Received September 9, 2009. Accepted March 8, 2010.
 2000 Mathematics Subject Classification: 39B72, 39B52
 Keywords and phrases: Generalized stability, random normed space, fixed point, cubic function, quadratic function.
 *Corresponding author.

