1 |
T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66.
DOI
|
2 |
P.W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76-86.
DOI
|
3 |
Z. Gajda, On the stability of additive mappings, Int. J. Math. Math. Sci. 14 (1991), 431-434.
DOI
ScienceOn
|
4 |
P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
DOI
ScienceOn
|
5 |
D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941), 222-224.
DOI
ScienceOn
|
6 |
S.-S. Jin and Y.-H. Lee, A fixed point approach to the stability of the Cauchy additive and quadratic type functional equation, J. Appl. Math. 2011 (2011), Article ID 817079, 16 pages.
|
7 |
S.-S. Jin and Y.-H. Lee, A fixed point approach to the stability of the quadratic-additive functional equation, J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 18 (2011), 313-328.
|
8 |
S.-S. Jin and Y.-H. Lee, On the stability of the generalized quadratic and additive functional equation in random normed spaces via fixed point method, Korean J. Math. 19 (2011), 1-15.
DOI
ScienceOn
|
9 |
S.-M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl. 222 (1998), 126-137.
DOI
ScienceOn
|
10 |
H.-M. Kim, On the stability problem for a mixed type of quartic and quadratic functional equation, J. Math. Anal. Appl. 324 (2006), 358-372.
DOI
ScienceOn
|
11 |
Y.-H. Lee, On the stability of the monomial functional equation, Bull. Korean Math. Soc. 45 (2008), 397-403.
DOI
ScienceOn
|
12 |
Y.-H. Lee and K.W. Jun, A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl. 238 (1999), 305-315.
DOI
ScienceOn
|
13 |
Y.-H. Lee and K.W. Jun, A generalization of the Hyers-Ulam-Rassias stability of Pexider equation, J. Math. Anal. Appl. 246 (2000), 627-638.
DOI
ScienceOn
|
14 |
Y.-H. Lee and K. W. Jun, A note on the Hyers-Ulam-Rassias stability of Pexider equation, J. Korean Math. Soc. 37 (2000), 111-124.
|
15 |
Y.-H. Lee and K.-W. Jun, On the stability of approximately additive mappings, Proc. Amer. Math. Soc. 128 (2000), 1361-1369.
DOI
ScienceOn
|
16 |
B. Margolis and J.B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968), 305-309.
DOI
|
17 |
D. Mihet and V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl. 343 (2008), 567-572.
DOI
ScienceOn
|
18 |
V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory 4 (2003), 91-96.
|
19 |
Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
DOI
ScienceOn
|
20 |
I.A. Rus, Principles and applications of fixed point theory, Editura. Dacia, Cluj-Napoca, 1979 (in Romanian).
|
21 |
B. Schweizer and A. Sklar, Probabilistic metric spaces, Elsevier, North Holand, New York, 1983.
|
22 |
A.N. Serstnev, On the motion of a random normed space, Dokl. Akad. Nauk SSSR 149 (1963), 280-283.
|
23 |
S.M. Ulam, A collection of mathematical problems, Interscience, New York (1968), 63.
|