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ABSTRACT. We employ the notion of implicit functions to prove a general
common fixed point theorem in fuzzy metric spaces besides adopting the
idea of R-weak commutativity of type (P) in fuzzy setting. In process,

several previously known results are deduced as special cases to our main
result.
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1. .Introduction

There do exist many situations wherein the distances between the points
are rather inexact than being a single nonnegative real number which led to
the introduction of probabilistic metric spaces and continues to be a subject of
interest for the researchers of this domain. But if uncertainty is due to fuzziness
rather than randomness, then in this situation concept of fuzzy metric spaces is
relatively more suitable. Inspired from these observations, Deng [3|, Erceg [4]
and Kramosil and Michalek {13} introduced the notion of fuzzy metric spaces by
generalizing the concept of the probabilistic metric spaces to the fuzzy situations.

On the other hand, Kaleva and Seikkala [11] generalized the notion of met-
ric spaces by setting the distance between the points to be non-negative fuzzy
numbers where triangle inequality is realized by defining an ordering in the set
of fuzzy numbers. This natural way of defining fuzzy metric spaces has been
exploited by several researchers of this domain especially metric fixed point the-
orists and by now there exists considerable literature on fixed point theorems in
fuzzy metric spaces which includes [5, 7-12, 15, 18, 21]. In {24}, Xia and Guo also
redefined the fuzzy metric spaces using fuzzy scalers instead of fuzzy numbers
or real numbers along with some results on completeness of fuzzy metric spaces.
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The approach of Xia and Guo [24] is more natural and soothing and as per our
expectation, it will inspire further developments in near future.

In recent years, Popa {17] used implicit functions rather than contraction con-
ditions to prove fixed point theorems in metric spaces whose strength lies in its
unifying power as an implicit function can cover several contraction conditions at
the same time which includes known as well as unknown contraction conditions.
This fact is evident from examples furnished in Popa [17].

In 1999, Vasuki [22] proved the following theorem for a pair of R-weakly
commuting mappings satisfying a Boyd and Wong [1] type contraction condition
which is a fuzzy version of a result due to Pant [14, Theorem 1}.

Theorem 1. Let (X,M,x) be a complete fuzzy metric space and A and S
be R-weakly commuting self mappings of X satisfying A(X) C S(X) and
M(Azx, Ay,t) > r(M(Sz, Sy,t)) for all x,y € X, where 7 :[0,1] — [0,1] is
continuous function such that v(s) > s for each 0 < s < 1. Suppose that one of
A and S is continuous. Then A and S have a unique common fized point in X.

Here it may be pointed out that Theorem 1 has been further extended for
two pairs of R-weakly commuting mapplngs by Chugh and Kuma.r 2] and Singh
and Jain [20].

In this paper, we introduce a suitable implicit function to prove fixed point
theorems in fuzzy metric spaces and also furnish several examples enjoying the
format of our implicit function. We are not aware of any fixed point theorem
proved via implicit functions in fuzzy metric spaces. In process, several previ-
ously known results due to Chugh and Kumar [2], Imdad and Ali [10}, Singh and
Jain [20] and Vasuki {22] can be deduced as a special case. Moreover, adopting
R-weak commutativity of type (Ay), type (Ag) to fuzzy setting and to introduce
R-weak commutativity of type (P) which are to be used to prove our results in
this paper. | | -

| Our improvement in this paper is four fold which includes: |

(i) relaxing the continuity requirement of all maps completely,

(ii) mlmmlzmg the commutativity requlrement of the maps to the pomt of
coincidence,

(iii) replacing the completeness requirement of the space by four alternative
natural conditions,

(iv) replacing contraction condition with a suitable implicit function to prove
our results.

2. Preliminaries
In what follows, we collect relevant definitions, results and examples to make

our presentatlon as self-contained as possible.

Definition 1([25]). A fuzzy set A in X is a function w1th domain X and values
in [0, 1.
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Definition 2([19]). A binary operation * : [0,1] x [0,1] — [0, 1] is a continuous
t-norm if {[0, 1}, %} is an Abelian topological monoid with unit 1 such that axb <
c* d whenever a < cand b<d, a,b,¢,d € [0,1].

Definition 3([13]). The triplet (X, M,*) is a fuzzy metric space if X is an
arbitrary set, x is a continuous ¢-norm, and M is a fuzzy set in X 2 % 0, 00)
satisfying the following conditions:

(i) M(z,y,0)=0,

(i) M(z,y, )—-1fora.llt>01ff;c=y,

(il)) M(z,y,t) = M(y,z,1),

(iv) M(z,y,t)* M(y,2,8) < M(z,2,t+ ),

(v) M(z,y,.) : [0,00) — [0,1] is left continuous for all z,y,z € X and

s,t > 0.

In recent years, George and Veeramani [7] modified the concept of fuzzy metric
spaces introduced by Kramosil and Michalek [13] and defined Hausdorff topology
of metric spaces which is later proved to be metrizable. They also showed that
every metric induces a fuzzy metric and furnished the followmg example (m
- sense of George and Veeramani [7]). | "

Example 1. Every metric space induces a fuzzy metric space. Let (X, d) be a

metric space. Define axb = ab and M(z,y,t) = g +tid($ mt Jk,m,n,t e RT.

Then (X, M, x) is a fuzzy metric space. If we put k =m =n =1, we get
t
t+d(z,y)

The fuzzy metric induced by the metric d is referred as standard fuzzy metric.

M(z,y,t) =

Definition 4(cf. [9]). A sequence {z,} in a fuzzy metric space (X, M, ) con-
verges to xr € X if

lim M(xn,a: t) =1 for each t > 0.

n-—oo

Recently, there is some debate on existing definitions of Cauchy sequences
which are available in [21, 23] wherein the Cauchy sequences defined by Grabiec
[9]) are labeled as G-Cauchy sequences. But in order to prove our results, we
adopt the definition of Cauchy sequence the sense of Vasuki and Veeramani [23].

Definition 5(cf. [9]). A sequence {z,} in a fuzzy metric space (X, M, %) is called
G-Cauchy if lim M (zn4p,Zn,t) =1 for every t > 0 and each p > 0. Moreover,

(X, M,x) 1s called G-complete if every G-Cauchy sequence in X Conver_ges in X.

Definition 6. A pair of self-mappings (f,g) of a fuzzy metric space (X, M, *)'
is said to be

(i) weakly commuting (cf. [22]) if M (fgz,gfz,t) > M(fz,gx,t),
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(ii) R-weakly commuting (cf. [22]) if there exists some R > 0 such that

M(fgz,g9fzx,t) > M(fz,gz,t/R),
(iii) R-weakly commuting mappings of type (Ay) if there exists some R > 0
such that M(fgzx, ggz,t) > M(fz,gz,t/R),
(iv) R-weakly commuting mappings of type (Ag) if there exists some R > 0
such that M(gfz, ffz,t) > M(fz,gz,t/R), | -
(v) R-weakly commuting mappings of type (P) if there exists some R > 0
such that M(f fz,ggx,t) > M(fz,gz,t/R), for all x € X and t > 0.

Notice that Definition 6(iii) and Definition 6(iv) are inspired by Pathak et al.
[16] whereas Definition 6(v) seems to be unreported.

Example 2(cf. [22]). Let X = R, the set of real numbers. Define axb = ab and

( lz—y\ ~ 1
(e 7 ) forallz,ye X andt > 0"
M(z,y,t) = < | |

L0 for all z,y E_XandtzO.

Then it is well known that (X, M, *) is a fuzzy metric space (cf. [22]). Define
fr =2z —1and gz = z2. Then by a straightforward calculation, one can show
‘that

| o
M(fgz,gfz,t) = (eJ—Lz ) |

= M(fz,g9z,t/2)

which shows that the pair (f,¢) is R-weakly commuting for R = 2. Note that
the pair (f,g) is not weakly commuting due to strict mcreasmg prOperty of
exponential function. | | - -

However, various kinds of above mentioned ‘R-weak commutativity’ notions
are independent of one another and none implies the other. The earlier example
can be utilized to demonstrate this inter independence. -

To demonstrate the independence of ‘R-weak commutativity” with ‘R-weak
commuta.tlwty of type (Ay), notice that

M(fgz,99z,t) = ( = H[) = (em R )

a2\l | |
< (eﬂ'f_l') = M(fz,gz,t/R) when z > 1

which shows that ‘R-weak commutativity’ does not imply ‘R-weak commutativ-
ity’ of type (A £).

Secondly, in order to demonstrate the independence of ‘R-weak commutativ-
ity’ with ‘R-weak commutativity’ of type (P), note that

. S -1 e 102 (2 420+ -1
M(ffx,gg:z:,t) — (e‘—‘:—"ﬁl) _(en( - 1)I. ( +§ .H))
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R|x—1(2

<(e : ) =M(fa;,g:1:,t/R)forw>1..

Finally for a change the pair (f,g) is R-weakly commuting of type (Ag) as

2z — 1)2 —4z+ 3|\ "
)

_ (6.413: ; 12 ) -1

= M(fz,gx,t/4)

M(gfz, ffz,t) = (e

which shows that (f,g) is R-weakly commuting of type (Ag) for R = 4. This
situation may also be utilized to interprete that an R-weakly commuting pair
of type (Ag) need not be R-weakly commuting pair of type (As) or type (P).
It is not difficult to find examples to establish the independence of one of these

definitions from the others which shows that there exist situations to suit a
definition but not the others. |

However, the R-weak commutativity of type (Ay), type (Ag) and type (P)
can together imply R-weak commutativity in a specific setting which can be
described as follows. | |

Proposition 1. Let (f, g) be a pair of self-mappings which is R-weakly commut-
ing of type (Ay), type (Ag) and type (P) (at the same time) and axb = min{a, b}.
Then the pair (f,g) is R-weakly commuting.

Proof. 1t is straightforward to write

M(fg9z,9fz,t) > M(fgz,g9z,t/3)* M(gga, f fz,t/3) * M(ffx,9fz,t/3).
Now using the definitions of R-weakly commuting of type (As), type (Ag) and
type (P) there exists constants Ry, B2, R3 > 0 satisfying

M(fgz,9fz,t) > M(fz,gz,t/3R1) » M(fz,gz,t/3R2) « M(fz, gz,t/3R3)
implying thereby

M(fgz,g9fx,t) > M(fz,gz,t/3R;)

(for some 1 < 7 < 3) which shows that the pair (f, g) is R-weakly commuting. [J

3. Implicit functions

In this section, we define a suitable implicit function in fuzzy metric spaces
to prove our results. Let ¥ denote the family of all continuous functions F' :
[0,1]* — R satisfying the following conditions:

F : For every u > 0,v > 0 with F(u,v,u,v) > 0or F(u,v,v,u) > 0, we have

u>v.

F: Flu,u,1,1) <0, Vu>0.
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Example 3. Define F:[0,1]* —» R as

F(t1,t2,13,t4) = t1 — ¢(min{t2, t3,ta}),

where ¢ : [0,1] — [0, 1] is a continuous function such that ¢(s) > sfor 0 < s < 1.
Then

F: F(u,v,u,v) = u—¢(min{v,u,v}) > 0. If u < v, then u—~¢(u) > 0 imply
u 2 ¢(u) > u, a contradiction. Hence u > v.

F: Flu,u,1,1)=u — ¢(min{u,1,1}) =u — ¢(u) <0, Vu>0.
Example 4. Define F': [0,1]* — R as

F(ty,to,t3,t4) =t; — amin{tz, t3,t4}, where a > 1.

Fi: F(u,v,u,v) = u— amin{v,u,v} > 0. If u < v, then u > au > u, a
contradiction. Hence u > v.

F: Flu,u,1,1)=u—amin{u,1,1} =u(l —a) <0, Vu>0.
Example 5. Define F: [0,1}4 — R as |

F(t1,t2,t3,t4) = t; — aty — min{t3, t4}, wherea >0.

F: F(u,v,u,v) = u—av — min{y,v} > 0. If u < v, thenav <0, a
contradiction. Hence u > v.

Fr: F(u,u,1,1)=u—au—min{l,1}=(1-a)u—1<0, Vu>0.
Example 6. Define F : {0,1]* — R as

F(t1,t2,t3,t4) = t; — aty — bty — cty,

where a > 1, b,c > 0(# 1).

Example 7. Define F: [0,1] - R as |
- - F(t1,t2,t3,t1) = t1 — ata — b(tz + t4),
wherea > 1, b > 0(# 1).
Example 8. Define F : [0, 1] > R as
F(ty,tg,t3,t4) = t? — a totsts, where a > 1.

Since verification of requirements (F; and F3) for Examples 6-8 is s_traight__-
forward, hence details are omitted.

4. Main results
Now we state and prove our main result as follows:

Theorem 2. Let A,B,S and T be four self-mappings of a fuzzy metric space
(X, M, ) satisfying the condition:

F(M(Az, By,t), M(Sz,Ty,t), M(Sz, Az,t), M(By,Ty,t)) > 0 (1)
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for all distinct x,y € X and t > 0, where F € ¥. If A(X) Cc T(X), B(X) C
S(X) and one of A(X), B(X), S(X) or T(X) is a complete subspace of X. Then

(a) the pair (A, S) has a point of coincidence, and

(b) the pair (B,T) has a point of coincidence.

Moreover, if the pairs (A, S) and (B, T) are weakly compatible, then A, B S
and T have a unigue common fized point.

Proof. Let xg be an arbitrary point in X. Then following arguments of Fisher
6], one can construct sequences {z,} and {y,} in X such that

Yon = TZang41 = AZon and yont1 = STonta = BTony.

The sequences {z,} and {y,} in X are such that z,, — z,y, — y,t > 0 implies
M(.’L'n, y‘ﬂ-: t) — M(.’L‘, y) t)
Now making use of (1), we have

F(M(szn) B$2n+la t), M(S$2n: T:E2n+ls t)s M(S-'EQna A$2n: t),
M(Bzony1, Txon41,t)) 20

or F(M(ygn, Y2n+1, t)’ M(yQ'n—l, Yon, t)) M(y2n——1a Yon, t)s M(g?n) Yon+1, t)) 2 0.
Hence in view of (F), we have

M(y2n1y2n+lat) > M(yl’n—lsy?nst)- | (2)

Thus {M (y2n, Y2n+1,t), 7 > 0} is an increasing sequence of positive real numbers
in [0, 1] and therefore tends to a limit [ < 1. We assert that [ = 1 . If not, (i.e.
l < 1) then on letting n — oo in (2) one gets [ > [ a contradiction. Hence [ = 1.
Therefore for every n € N, using analogous arguments one can also show that

{M(Yan+1,Y2n+2,t),n > 0} is a sequence of positive real numbers in [0, 1] which
converges to 1. Therefore for every n € N

M(yn, Ynt1,t) > M(yn—1,yn,t) and lim M(ya,yn41,1) = L.
Now for any positive integer p

M(Yn, Yn+pst) = M(Yn, Yn+1, t/p)* ... x* M(Ynip—1,Yn+p  t/D).
Since lim M(yn,yns1,t) =1 for t > 0, it follows that

n-——0Q

lim M(yn,yn+p,t) >1lxlx...xl1=1
nN—0Q0

which shows that {y,} is a Cauchy sequence in X. -

Now suppose that S(X) is a complete subspace of X, then the subsequence
{¥2n+1} must converge in $(X). Call this limit to be w and v € S~ 1u. Then Sv =
u. As {yn} is a Cauchy sequence containing a convergent subsequence {yan+1}s
therefore the sequence {y,} also converges implying thereby the convergence of
{y2n} being a subsequence of the convergent sequence {y,}. If Av # Sv, then
on setting £ = v and y = 2,41 in (1), one gets (for t > 0)

F(M(Av, Bzony,t), M(S'v, Txon41,t), M(Sv, Av,t), M(Bzapnt1, TZ2n+1,1)) > 0
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which on letting n — oo reduces to

F(M(Av,u,t), M(Sv,u,t), M(Sv, Av,t), M(u,.u_,t*)”) >0
F(M(Av, Svt)lM(Sv Av,t),1) >0 B

yielding thereby, M(Av, Sv,t) > 1, a contradiction. Hence, Av = Sv Wthh:
shows that the pair (A4, S) has a point of coincidence.

As A(X) c T(X) and Av = u implies that u € T(X). Let w € T~ 'u, then
Tw = u. Suppose that Tw # Bw. Again using (1), we have - -

F(M(Azy,, Bw,t), M(Sxz,, Tw,t), M(Szon, Axon,t), M(Bw,Tw,t)) > 0
which on letting n — oo reduces to
F(M(Tw, Bw,t),1,1, M(Tw, Bw, t)) >0

implying thereby, M(Tw, Bw,t) > 1, a contradiction. Hence T'w = Buw. Thus
we have u = Av = Sv = Bw = Tw Wthh amounts to say that both the pairs
have point of coincidence. If one assumes 7(X) to be complete, then analogous
arguments establish this claim.

The remaining two cases pertain essentially to the previous cases. Indeed,
if A(X) is complete then v € A(X) C T(X) and if B(X) is complete then
u € B(X) C §(X). Thus (a) and (b) are completely established.

Moreover, if the pairs (4, S) and (B,T) are weakly compatlble at v and w
respectively, then

Au= A(Sv) = S(Av) = Su and Bu = B(Tw) = T(Bw):Tu.-
If Au # u, then for ¢ > 0 | |
 F(M(Au, Bw,t), M(Su, Tw,t), M(Su, Au,t), M(Bw, Tw,t)) > 0
F(M(Au,u,t), M(Au,u,t),1,1) > 0

which contradicts (F3). Hence Au = u. Similarly one can show that Bu = u.
Thus u is a common fixed point of A, B, S and T. The uniqueness of common
fixed point follows easily. Also u remains the unique common fixed point of both
the pairs separately. This completes the proof. | B

By setting B=Aand T = S5, we have the following corolla,ry for two maps.

Corollary 1. Let A and S be two self- mappmgs of a fuzzy metmc space (X M *)
satisfying the condztzon

F(M(Az, Ay, t), M(Sx, Sy, t), M(Sz, Az, ), M(Ay,sfg,t)) >0 (3)

for-allz,y € X andt >0, where F € U. If A(X) C S(X) and one of A(X) and
S(X) is complete subspace of X. Then | | |
(c) the pair (A, S) has a point of coincidence. .
Moreover, if the pair (A, S) is weakly compatible, then A and S have a umque
common fized point. - - -
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Corollary 2. The conclusions of Theorem 2 remain true if for all distinct x,y €
X implicit function (1) is replaced by one of the following: |
(a1) M(Az, By, t) > ¢(min{M(Sz,Ty,t), M(Sz, Az,t), M(By, Ty,t)}), where
¢ :[0,1] — [0,1] is a continuous function such that ¢(s) > s for all 0 < s < 1.
(a2) M(Az, By,t) > amin{M (Sz,Ty,t), M(Sz, Az,t), M(By,Ty,t)}, where
a>1. |
(a3) M(Az, By,t) > aM(Sz, Ty, t)+min{M(Sz, Az,t), M(By,Ty,t)}, where
a > (.
(as) M(Az,By,t) > aM(Sz,Ty,t) + bM(Sz, Az, t) + cM(By, Ty,t), where
a>1andb,c>0(#1).
(as) M(Az,By,t) > a
a>1andb>0(#1).
(ag) M3(Azx, By,t) > aM(Sz, Ty, t)M(Sz, Az, t)(By, Ty, t), where a > 1.

Proof. The proof of the corollaries corresponding to contraction conditions a; —
ag follows from Theorem 2 and Examples 3-8. [

M(Sz,Ty,t) + b|M(Sz, Az,t) + M(By, Ty,t)], where

Remark 1. Corollary corresponding to contraction condition (a;) is a result
due to Imdad and Ali {10| and generalized form of results contained in [2, 20,
22]. We also point out that some of above corollaries are new to the literature
(e.g. Corollaries corresponding to az — as).

Theorem 3. Theorem 2 remains true if ‘weak compatibility’ property is replaced
by any one of the following (retaining the rest of the hypotheses):
(i) R-weakly commuting property,
(ii) R-weakly commuting property of type (Ay),
(iii) R-weakly commuting property of type (Ag)
(iv) R-weakly commuting property of type (P),
(v) weakly commuting property.

b

Proof. Since all the conditions of Theorem 2 are satisfied, therefore the existence
of coincidence points for both the pairs is guaranteed. Let x be an arbitrary point
of coincidence for the pair (A4, S), then using R-weak commutativity one gets

M(ASz,SAx,t) > M(Az,Sz,t/R) =1

which amounts to say that ASx = SAz. Thus the pair (4, .5) is weakly compat-

ible. Similarly (B,T) commutes at all of its coincidence points. Now appealing

Theorem 2, one concludes that A, B, S and T" have a unique common fixed point.
In case (A4, S) is R-weakly commuting pair of type (Af), then

M(ASz,S%z,t) > M(Az,Sz,t/R) =1
which amounts to say that ASz = S%z. Now
M(ASz, SAz,t) > M(ASz, S?x,t/2) » M(S%z, SAz,t/2) =1x1=1

yielding thereby ASx = SAz. Similarly if the pair (A4, S) is R-weakly commuting
mapping of type (Ag) or type (P) or weakly commuting, then the pair (A, S)
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also commutes at the points of coincidence. Similarly, one can show that the pair
(B,T') also commutes at the points of coincidence. Now in view of Theorem 2, in
all four cases A, B, S and T have a unique common fixed point. This completes
the proof. (]

As an application of Theorem 2, we prove a common fixed point theorem for
four finite families of mappings which runs as follows:

Theorem 4. Let {A;, A2,... ,An}, {B1,Ba,... ,Bn}, {51, 52,...,5p} and {11,
Ty, ..., Ty} be four finite families of self-mappings of a fuzzy metric space (X, M, x)
such that A = A1Ay... Am, B = B1By...B,, § = .5'1.5'2,..Sp and T =
Ty ... T, satisfy condition (1) with A(X) C T(X) and B(X) C S(X). If
one of A(X),B(X),S(X) or T(X) is a complete subspace of X, then

(d) A and S have a point of coincidence,

(e) B and T have a point of coincidence.

Moreover, if A;A; = A;Ai, BeB; = B;Byg, 5:Ss = SsSr, Tt T, = T T3, AiSr =
SrA; and BTy = Ty By, foralli,j € I = {1,2,... ,m}, k,l € I ={1,2,... ,n},r,
s€l3={1,2,...,p} and t,u € Iy = {1,2,...,q}, then (for all i € I,k €
Is,r€ Iz andte ly) A;, Sr, Bx and T} have a common fized point.

Proof. The proof follows from Theorem 3.3 of Imdad and Ali [10]. O

Corollary 3. Let A,B,S and T be four self-mappings of a fuzzy metric space
(X, M,x) such that A™,B™ SP and T? satisfy the condition (1). If one of
A™(X), BMX), SP(X) or TU(X) is a complete subspace of X, then A,B,S
and T have a unigue common fized point provided (A, S) and (B,T) commute.

The following example furnishes an instance where Corollary 3(a) is applica-
ble but Theorem 1 (also theorem due to Chugh and Kumar [2]) cannot be used
due to the absence of continuity requirement.

Eicample 9. Consider X = [0, 1] equipped with the natural metric d(zx,y) -
|z — y|. Now for £ € [0, 00) define

0, ift=0andx,y€_X
M(z,y,t) =

ift>0and z,y € X.

t+ |z —y|’

Clearly (X, M, *) is a fuzzy metric on X where x is defined as a x b = ab.
Define A, B,S and T on [0, 1] as

(1, ifze(0,1]NQ (1, ifz€[0,1]NQ
Ax = | Bx = ¢
0, if z ¢ [0,1]NQ,

, if z ¢10,1]N@Q,

DO | -

\
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r ] r 1
Eaif05$<1 Z, f0<z <1
St = { | and Tz = { '-
\ 11 ’},fﬂ::]_, \ 1, Zf:l::l.

Then A%(X) = {1} C (5,1} = T*(X) and B%(X) = {1} C {5,1} = S*(X)
Define ¢ : [0,1] — [0,1] as ¢(0) = 0,¢(1) = 1 and ¢(s) = /s for all s € (0,1).
Then

1 = M(A%z, Bzy,t)

> Qb( min{ M (S%x, T?y,t), M(S%z, A%z, t), M(B%y, T?y, t)})

for all ¢ > 0. Also the various componentwise commutativity conditions ensure
the commutativity of the both pairs (A, S) and (B,T). Thus all the conditions
of the Corollary 3 are satisfied and 1 is the common fixed point of A, B, S and
T.

Here one needs to note that Theorem 1 (also theorem due to Chugh and
Kumar [2]) cannot be used in the context of this example because if we take

z,y ¢ Q, then
t

. t t t
t+l :M(A:v,By,t)qu(m1n{t+l,t+l,t+l})

which is not always true for t > 0 (e.g. t = 0.5). On the other hand all the
four mappings are discontinuous which is not in lieu of the requirements of the
Theorem 1 (also theorem due to Chugh and Kumar [2]).

Finally, we furnish an example to create a situation which demonstra,tes the
utility of Theorem 4

Example 10. Consider (X, M,*) as in Example 9. Define four finite families
of maps as ,.

(1, ifz€(0,1]NQ | (1, ifz€[0,1]NQ

IIIAJn:v':< B.x = < 1
g izelane, | gifeglane
(1, ifzel0,nQ  (1,ifzel0,1]NQ
Sn = ¢ | - and T,z = ¢ 1 | o
| 5 i 2¢0,10Q | 3 22 0.1NG

wheren=1,2,...,100. | p
Evidently A(X) = Al'Ag «oo AIOO(X) Tng Tmo (X) T(X) and B(X)
Ble R BlOO(X) = Sl Sg . SlOO(X) (X) Define qf) [0 1] [0 1] as in Ex—

ample 9. -

Considering the same implicit function as in Example 9, by routine calcu-
lations one can easily verify that the condition (1) is satisfied for all distinct
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z,y € [0,1]. Also the various componentwise commutativity ensure the commu-
tativity of both the pairs (A, S) and (B, T). Thus all the conditions of Theorem
4 are satisfied and 1 is the common fixed point of A, B, S and T. Notice that
every member map of all the four families is discontinuous.

Acknowledgment.

Authors are grateful to the learned referee for his valuable suggeétidns.

REFERENCES

. '_

D W. Boyd and J. S Wong, On nonlinear contmctwns, Proc. Amer. Math. Soc 20 (1969)

458-462.

2. R. Chugh and S. Kumar, Common fized point theorem in fuzzy metric spaces, Bull. Ca]-

cutta Math. Soc. 94(1) (2002), 17-22.

Z. Deng, Fuzzy pseudo-metric space, J. Math, Anal. Appl. 86 (1982), 74-95. |

M. A. Erceg, Metric space in fuzzy set theory, J. Math. Anal. Appl. 69 (1979), 205-230.

5. J. X. Fang, On fized point theorems in fuzzy metric spaces, Fuzzy Sets Systems 46 (1992)
107-113.

6. B. Fisher, Common fized points of four mappings, Bull. Inst Math. Acad. Sinica 11 (1983),
103-113. ~ ° -

7. A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Systems
- 64 (1994), 395-399.
8. A. George and P. Veeramam On some results of analyszs for fuzzy metrzc spaces, Fu_zzy

~ Sets Systems 90 (1997), 365-368. |

9. M. Grabiec, Fized points in fuzzy metric space, Fuzzy Sets Systems 27 (1988), 385- 389.

10. M. Imdad and Javid Ali, Some common fized point theorems in fuzzy metric spaces, Math.
Commun. 11 (2006), 153-163.

11. O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets Systems 12 (1984) 215- 2‘29

12. O. Kaleva, The completion of fuzzy metric spaces, J. Math. Anal. Appl. 109 (1985) 194—
198. "

13. I. Kramosi! and J. Michalek, Fuzzy metrics and statistical metric spaces, Kybernetika 11
(1975), 336-344.

14. R. P. Pant, Common ﬁxed point for noncommutmg mappmgs, J. Math. Ana.l Appl 188(2)
(1994), 436-440.

15. R. P. Pant and K. Jha, A remark on common fized points of four mappings in a fuzzy
metric space, J. Fuzzy Math. 12(2) (2004), 433-437.

16. H. K. Pathak, Y. J. Cho and S. M. Kang, Remarks on R-weakly mappings and common

 fired point theorems, Bull. Korean Math. Soc. 34(2) (1997), 247-257.

17. V. Popa, A fized point theorem for mapping in d-complete topological spaces, Math. Morav-
ica 3 (1999), 43-48.

18. A. Razani and M. Shirdarazdi, Some results on ﬁxed points in the fuzzy metric space, J.
Appl. Math. Comput. 20 (2006), 401-408.

19. B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math 10 (1960), 313-334

20. B. Singh and S. Jain, Weak compatibility and fized point theorems in fuzzy metric space
Ganita 56 (2005), 167-176.

21. G. Song, Comments on a common fized point theorem in fuzzy metric space, Fuzzy Sets
Systems 135 (2003), 409-413.

22. R. Vasuki, Common fized points for R-weakly commutmg maps in fuzzy metmc spaces

~ Indian J. Pure Appl. Math. 30(4) (1999), 419-423.

P w



23.

24.
25.

A general fixed point theorem in fuzzy metric spaces via an implicit function 603

R. Vasuki and P. Veeramani, Fized point theorems and Cauchy sequences in fuzzy metric
spaces, Fuzzy Sets Systems 135 (2003), 415-417. -
Z. Q. Xia and F. F. Guo, Fuzzy metric spaces, J. Appl. Math. Comput. 16 (2004), 371-381.
L. A. Zadeh, Fuzzy sets, Inform. Control 8 (1965), 338-353.

M. Imdad received his B. Sc (1977), M. Sc (1979) and Ph. D (1984) from Aligarh Muslim
University, Aligarh (India) and also worked as Post Doctoral Fellow from 1984 to 1985 at A.
M. U., Aligarh. He became Lecturer in 1983, Reader in 1997 and was promoted to Professor
in 2006 at the same university. His area of research interests include Functional Analysis,
FFixed Point Theory and Fuzzy Set Theory. He has natural teaching interests apart from
his research activities. Four students have obtained Ph.D degree under his supervision till
now and some are working under him.

Department of Mathematics, Aligarh Muslim University, Aligarh 202 002, India
e-majil: mhimdad@yahoo.co.in

Javid Ali received his B. Sc (2000) from Dr. B. R. Ambedkar University, Agra (India),
M. Sc (2002) and M. Phil. (2004) from Aligarh Muslim University, Aligarh (India) and

presently working towards his Ph.D with Prof. M. Immdad in the area of Metric and Fuzzy
Metric Fixed Point Theory.

Department of Mathematics, Aligarh Muslim University, Aligarh 202 002, India
e-mail: javid@math.com



