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AN EKELAND TYPE VARIATIONAL PRINCIPLE ON

GAUGE SPACES WITH APPLICATIONS TO FIXED POINT

THEORY, DROP THEORY AND COERCIVITY

Jong-Sook Bae, Seong-Hoon Cho, and Jeong-Jin Kim

Abstract. In this paper, a new Ekeland type variational principle on
gauge spaces is established. As applications, we give Caristi-Kirk type
fixed point theorems on gauge spaces, and Daneš’ drop theorem on semi-

normed spaces. Also, we show that the Palais-Smale condition implies
coercivity on semi-normed spaces.

1. Introduction

The Ekeland’s variational principle is one of the most important results in
nonlinear analysis and very useful tools to solve problems in optimization, op-
timal control theory, game theory, nonlinear equations and dynamical systems
[2, 3, 4, 13, 17, 18, 24, 34]. Qiu [30] extends the result of Phelps [28, pages
47] to countable semi-normed spaces and obtain Ekeland’s variational prin-
ciple. Recently, the authors [2] gave an Ekeland type variational principle in
quasi-metric spaces and a Caristi-Kirk type fixed point theorem for multivalued
maps. Also, in [31, 32], the authors obtained Ekeland’s variational principle
and some related results in locally p-convex spaces.

We establish an Ekeland type variational principle for a countable family
of lower semi-continuous functions defined on gauge spaces. This result is a
generalization of Qiu’s result [30].

In [1, 19, 20, 21], the authors obtained fixed point results on gauge spaces.
In Section 3, we give Caristi type fixed point theorems on gauge spaces.
We give applications of our results to drop properties and the Palais-Smale

condition. Daneš’ drop theorem [11] in Banach spaces is equivalent to the
Ekeland’s variational principle [27] and it was generalized to locally convex
spaces by introducing the concept of a strong Minkowski separation of sets
[10]. Zheng [36] extended this result to topological vector spaces. Qiu [29]
generalized Daneš’ drop theorem to locally convex spaces.
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In Section 4, we generalize Daneš’ drop theorem to a sequentially complete
topological space whose topology is generated by a family of seminorms.

The Palais-Smale condition implies coercivity for a C1 function which is
bounded from below on a Banach space. In [8], the authors generalized this
result under weaker regularity assumptions in a Banach space.

In Section 5, we generalize this result to a complete locally convex topological
vector space generated by a family of seminorms.

2. Variational theorems

We denote by (X, {dα}α∈Λ) the gauge space [14, pp. 198, 308] endowed with
a gauge structure induced by a family {dα : α ∈ Λ} of pseudo metrics. Recall
that a function f : X → R is lower semi-continuous if, for any sequence {xn}
in X and x ∈ X, g(x) ≤ limn→∞g(xn) whenever limn→∞ xn = x.

We extend Ekeland’s variational principle to gauge spaces.

Theorem 2.1. Let (X, {dα}α∈Λ) be a complete gauge space, F be a countable
family of lower semi-continuous functions from X into [0,∞), and let ϕ : Λ →
F be a map defined by ϕ(α) = ϕα. Then for any x0 ∈ X, there exists z ∈ X
such that

(i) for each α ∈ Λ, dα(x0, z) ≤ ϕα(x0)− ϕα(z),
(ii) for each x ∈ X with x ̸= z, there exists α ∈ Λ such that dα(z, x) >

ϕα(z)− ϕα(x).

Proof. We define a relation ≤ on X as follows.
For any x, y ∈ X,

x ≤ y ⇐⇒ dα(x, y) ≤ ϕα(x)− ϕα(y) for each α ∈ Λ.

It is easy to show that ≤ is an ordering. For any x ∈ X, let S(x) = {y ∈ X :
x ≤ y}, and F = {ϕn}∞n=1. Define ϕ : X → [0,∞) by

ϕ(x) =
∞∑

n=1

ϕn(x)

2n(1 + ϕn(x))
.

Then, it is clear that x ≤ y implies ϕ(y) ≤ ϕ(x), and x ≤ y with x ̸= y implies
ϕ(y) < ϕ(x).

Let x0 ∈ X be given. Take x1 ∈ S(x0) such that

ϕ(x1) < inf{ϕ(x) : x ∈ S(x0)}+ 1.

Inductively, we can choose a sequence {xn} in X such that

xn+1 ∈ S(xn) and ϕ(xn+1) < inf{ϕ(x) : x ∈ S(xn)}+
1

n+ 1
.

Then, for any α ∈ Λ, dα(xn+1, xn) ≤ ϕα(xn)− ϕα(xn+1) and so, for m > n,

dα(xn, xm) ≤ ϕα(xn)− ϕα(xm).
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Since {ϕα(xn)} is nonincreasing, {xn} is a Cauchy sequence. By the com-
pleteness of X, limn→∞ xn = z ∈ X exists. Since each ϕα is lower semi-
continuous, limϕα(xn) ≥ ϕα(z) for each α ∈ Λ.

Hence

dα(xn, z) = lim
m→∞

dα(xn, xm) ≤ ϕα(xn)− ϕα(z),

and hence z ∈ S(xn) for each n ∈ N.
If x ∈ S(z), then x ∈ S(xn) for all n ∈ N, and

inf{ϕ(x) : x ∈ S(xn)} ≤ ϕ(x) ≤ ϕ(z) ≤ inf{ϕ(x) : x ∈ S(xn)}+
1

n+ 1
.

Since n is an arbitrary natural number, we have ϕ(x) = ϕ(z), and so x = z.
Thus if x ̸= z, then x ̸∈ S(z). Hence there exists α ∈ Λ such that dα(z, x) >
ϕα(z)− ϕα(x). □

If F = {ϕ} is a singleton in Theorem 2.1, then we have the following corol-
lary.

Collorary 2.2. Let (X, {dα}α∈Λ) be a complete gauge space, and ϕ : X →
[0,∞) be a lower semi-continuous function. Then for any x0 ∈ X, there exists
z ∈ X such that

(i) dα(x0, z) ≤ ϕ(x0)− ϕ(z) for each α ∈ Λ,
(ii) for each x ∈ X with x ̸= z, there exists α ∈ Λ such that dα(x, z) >

ϕ(z)− ϕ(x).

By Corollary 2.2, we obtain the next corollary.

Collorary 2.3. Let (X, {dα}α∈Λ) be a complete gauge space, and ϕ : X →
[0,∞) be a lower semi-continuous function. Then for any x0 ∈ X, there exists
z ∈ X such that

(i) supα dα(x0, z) ≤ ϕ(x0)− ϕ(z),
(ii) for each x ∈ X with x ̸= z, supα dα(x, z) > ϕ(z)− ϕ(x).

Note that if (X, {dα}α∈Λ) is a complete gauge space and

(1) d(x, y) = sup
α∈Λ

dα(x, y) < ∞ for each x, y ∈ X,

then (X, d) is a complete metric space. Hence Corollary 2.3 is a special case of
the Ekland’s variational principle. However Corollary 2.3 does not require the
condition (1).

If X is a complete gauge space endowed with a gauge structure induced by a
countable family of pseudo metrics, then by Theorem 2.1, we get the following
theorem.

Theorem 2.4. Let (X, {dn}∞n=1) be a complete gauge space, and {ϕn}∞n=1 be
a family of lower semi-continuous functions from X into [0,∞). Then for any
x0 ∈ X, there exists z ∈ X such that

(i) for each n ∈ N, dn(x0, z) ≤ ϕn(x0)− ϕn(z),
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(ii) for each x ∈ X with x ̸= z, there exists n ∈ N such that dn(z, x) >
ϕn(z)− ϕn(x).

From Theorem 2.4 we have the following corollary.

Collorary 2.5 ([30]). Let (X, τ) be a complete seminormed topological vector
space whose topology is generated by a sequence of semi-norms p1 ≤ p2 ≤ · · · .
Assume that ϕ : X → [0,∞) is a lower semicontinuous function. Let x0 ∈ X.
Then for any 0 < λ < 1 and any i ∈ N, there exists z ∈ X such that

(i) λ pi(x0 − z) ≤ ϕ(x0)− ϕ(z),
(ii) for each x ∈ X with x ̸= z, λ limn→∞ pn(x− z) > ϕ(z)− ϕ(x).

3. Fixed point theorems

From Theorem 2.1 we have the following Caristi-Kirk type fixed point the-
orem on gauge spaces.

Theorem 3.1. Let (X, {dα}α∈Λ) be a complete gauge space, F be a countable
family of lower semi-continuous functions from X to [0,∞). Let ϕ : Λ → F be
a map defined by ϕ(α) = ϕα. If f : X → X is a map satisfying for each x ∈ X

dα(x, fx) ≤ ϕα(x)− ϕα(fx) for all α ∈ Λ,

then f has a fixed point in X.

Theorem 3.2. Let (X, {dα}α∈Λ) be a complete gauge space, F be a countable
family of lower semi-continuous functions from X to [0,∞), and let ϕ : Λ → F
be a map defined by ϕ(α) = ϕα. If F : X → 2X is a map satisfying for each
x ∈ X, there exists y ∈ Fx such that

dα(x, y) ≤ ϕα(x)− ϕα(y) for all α ∈ Λ,

then F has a fixed point in X.

If F is a singleton, then we have the following result.

Collorary 3.3. Let (X, {dα}α∈Λ) be a complete gauge space, ϕ : X → [0,∞)
be a lower semi-continuous function. If f : X → X is a map satisfying for
each x ∈ X,

dα(x, fx) ≤ ϕ(x)− ϕ(fx) for all α ∈ Λ,

then f has a fixed point in X.

Collorary 3.4. Let (X, {dα}α∈Λ) be a complete gauge space, ϕ : X → [0,∞)
be a lower semi-continuous function. If F : X → 2X is a map satisfying for
each x ∈ X, there exists y ∈ Fx such that

dα(x, y) ≤ ϕ(x)− ϕ(y) for all α ∈ Λ,

then F has a fixed point in X.
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Collorary 3.5 ([9]). Let X be a complete Hausdorff locally convex topological
vector space whose topology is generated by a family {pi}i∈I of continuous semi-
norms, where I is a directed set. Assume that ϕ : X → [0,∞) is a lower semi-
continuous function and k : I → (0,∞) is a nonincreasing function respect to
the ordering in I with supi∈I k(i) < ∞. If f : X → X is a map satisfying for
each x ∈ X,

pi(x− fx) ≤ k(i){ϕ(x)− ϕ(fx)} for each i ∈ I,

then f has a fixed point in X.

Proof. Put di(x, y) =
1

k(i)pi(x − y) for i ∈ I. Then (X, {di}i∈I) is a complete

gauge space. By Corollary 3.3, f has a fixed point in X. □
In [7], the authors extended the notion of contraction to Hausdorff locally

convex linear space X whose topology is generated by a family {pα}α∈Λ of
semi-norms as follows:

Let Y ⊂ X. We say that f : Y → Y is a contraction if, for every α ∈ Λ,
there exists kα < 1 such that pα(f(x)−f(y)) ≤ kαpα(x−y) for every x, y ∈ Y .

They proved that the Banach contraction principle is still valid for contrac-
tions defined on sequentially complete subspace Y of X.

We extend the Banach contraction principle to gauge spaces. That is, we
obtain the following contraction principle (Theorem 3.6) for a non-self map
with inwardness condition on a gauge space with countable pseudo metrics.

Theorem 3.6. Let (X, {dn}∞n=1) be a complete gauge space, and C be a non-
empty closed subset of X. Let f : C → X be a map satisfying

(i) for all n ∈ N, there exists kn ∈ (0, 1) such that dn(fx, fy) ≤ kndn(x, y)
for each x, y ∈ C,

(ii) for x ∈ C with x ̸= fx, there exists y ∈ C with x ̸= y such that
dn(x, fx) = dn(x, y) + dn(y, fx) for all n ∈ N.
Then f has a fixed point in C.

Proof. Assume that x ̸= fx for all x ∈ C. Then, for each x ∈ X there exists
y ∈ C with x ̸= y such that dn(x, fx) = dn(x, y) + dn(y, fx) for all n ∈ N.
Then

dn(y, fy)− dn(y, fx) ≤ dn(fx, fy) ≤ kndn(x, y),

and so
dn(y, fy)− dn(x, fx) + dn(x, y) ≤ kndn(x, y).

Thus, we have

dn(x, y) ≤
1

1− kn
[dn(x, fx)− dn(y, fy)].

By letting y = gx and

ϕn(x) =
1

1− kn
dn(x, fx) for all n ∈ N

dn(x, gx) ≤ ϕn(x)− ϕn(gx).
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By Theorem 3.1, g has a fixed point in X, which is a contradiction. Hence f
has a fixed point in C. □

Collorary 3.7. Let (X, τ) be a complete topological vector space whose topology
is generated by a family {pn}∞n=1 of seminorms and let C be a nonempty closed
subset of X. Suppose that f : C → X is a map satisfying

(i) for all n ∈ N, there exists kn ∈ (0, 1) such that pn(fx−fy) ≤ knpn(x−y)
for all x, y ∈ C,

(ii) fx ∈ IC(x) for all x ∈ C, where IC(x) = {x+ λ(y − x)|y ∈ C, λ ≥ 0}.
Then f has a fixed point in C.

4. Drop theorems

Daneš [11] proved the following theorem, so called Daneš’ drop theorem.

Theorem 4.1 ([11]). Let X be a Banach space. Let C be a closed bounded
convex subset of X and let A be a closed subset of X. Let α = inf{∥x − y∥ :
x ∈ A, y ∈ C} > 0. Then there exists a ∈ A such that D(a,C) ∩A = {a}.

In [10, 29], the authors generalized Daneš’ drop theorem to locally convex
spaces. We extend this result to semi-normed spaces.

Theorem 4.2. Let (X, {pα}α∈Λ) be a sequentially complete linear topological
space whose topology is generated by a family {pα}α∈Λ of semi-norms. Let
C be a sequentially closed bounded subset of X and let A be a sequentially
closed subset of X such that either C or A is a sequentially complete subspace
of X. If there exists a convex lower semi-continuous map ϕ : X → [0,∞)
such that ϕ(x) = 0 for all x ∈ C and ϕ(x) ≥ 1 for all x ∈ A, then for
each x0 ∈ A, there exists z ∈ D(x0, C) such that D(z, C) ∩ A = {z}, where
D(x0, C) = co(C ∪ {x0}), where co stands for the convex hull operator.

Proof. Let B = A ∩D(x0, C). Then B is a sequentially complete subspace of

X. Since D(x0, C) is bounded, there exists rλ > 0 such that sup{pλ(x) : x ∈
D(x0, C)} ≤ rλ for λ ∈ Λ. By Corollary 2.2, there exists z ∈ B such that, for
each x ∈ B with x ̸= z, there exists λ ∈ Λ satisfying

(2) pλ(x− z) > 2rλ(ϕ(z)− ϕ(x)).

If there exists x ∈ D(z, C)∩A with x ̸= z, then x ∈ B and x = tz+(1− t)c,
where c ∈ C and 0 < t < 1. Then since ϕ is convex, we have

ϕ(x) = ϕ(tz + (1− t)c) ≤ tϕ(z) + (1− t)ϕ(c) ≤ tϕ(z).

Thus we have

(3) ϕ(z) ≤ 1

t
ϕ(x).

Since c, z ∈ D(x0, C),

(4) pλ(x− z) = pλ((1− t)(c− z)) = (1− t)pλ(c− z) ≤ 2(1− t)rλ.
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By (2) and (3)

pλ(x− z) > 2rλ(ϕ(z)−ϕ(x)) ≥ 2rλ(ϕ(z)− tϕ(z)) = 2rλ(1− t)ϕ(z) ≥ 2rλ(1− t)

which contradicts to (4). Therefore, D(z, C) ∩A = {z}. □

Note that Theorem 4.2 requires the existence of a convex function ϕ instead
of the convexity of the set C. We can prove Theorem 4.1 directly from Theorem
4.2 by putting ϕ(x) = 1

α inf{∥x − y∥ : y ∈ C}. Also, the next corollary show
that Theorem 3 in [10] is a special case of Theorem 4.2.

Collorary 4.3 ([10]). Let (X, τ) be a sequentially complete locally convex space.
Let C be a sequentially closed bounded convex set in X. For every sequentially
closed set A, which is strongly Minkowski separated from C, there exists a ∈ A
such that D(a,C) ∩A = {a}.

Proof. Since A and C are strongly Minkowski separated, there exists a Minkow-
ski gauge p on X such that α = inf{p(x − y) : x ∈ A, y ∈ C} > 0. For any
x ∈ X, define ϕ(x) = 1

α inf{p(x−y) : y ∈ C}. Then ϕ is convex and continuous
such that ϕ(x) = 0 for x ∈ C and ϕ(x) ≥ 1 for x ∈ A. By applying Theorem 4.2,
we have the desired conclusion. □

5. Palais-Smale condition and coercivity

Let X be a Banach space. A Gateaux differentiable function ϕ : X → R
satisfies the Palais-Smale condition if every sequence {un} in X such that
{ϕ(un)} is bounded and ||ϕ′(un)|| → 0 contains a convergent subsequence. A
function ϕ : X → R is coercive if ϕ(u) → ∞ as || u ||→ ∞. It is known that
for a C1 function bounded from below on a Banach space, the Palais-Smale
condition implies coercivity (see [8, 26]). Caklovic et al. [8] proved the following
theorem by using the Ekeland’s variational principle.

Theorem 5.1. Let X be a Banach space and let ϕ : X → R be a Gateaux
differentiable lower semi-continuous function satisfying the Palais-Smale con-
dition. If ϕ is bounded from below, then ϕ is coercive.

We generalize this theorem to a complete locally convex topological vector
space with extended notions of the Palais-Smale condition and coercivity. Let
X be a locally convex topological vector space generated by a family {pλ}λ∈Λ

of seminorms. Recall that, a function ϕ : X → R is Gateaux differentiable at
x0 if there exists a continuous linear map ϕ

′
(x0) : X → R, such that for any

u ∈ X

lim
t→0+

ϕ(x0 + tu)− ϕ(x0)

t
= ϕ

′
(x0)(u).

Assume p(x) = supλ∈Λ pλ(x) < ∞ for each x ∈ X. LetX∗ = {Γ : X → R | Γ
is continuous and linear}. For Γ ∈ X∗, define

|Γ| = sup
x ̸=0

| Γ(x) |
p(x)

= sup
p(x)=1

| Γ(x) | .
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Then we know |Γ| < ∞ for Γ ∈ X∗. We define the Palais-Smale condition on
a locally convex topological vector space as follows:

A Gateaux differentiable function ϕ : X → R satisfies the Palais-Smale con-
dition if every sequence {un} inX such that {ϕ(un)} is bounded and |ϕ′(un)| →
0 contains a convergent subsequence. A function ϕ : (X, {pλ}λ∈Λ) → R is co-
ercive if for each λ ∈ Λ, ϕ(u) → ∞ as pλ(u) → ∞.

Theorem 5.2. Let (X, τ) be a complete locally convex topological vector space
generated by a family {pλ}λ∈Λ of seminorms, and let ϕ : X → R be a Gateaux
differentiable lower semicontinuous function satisfying the Palais-Smale condi-
tion. If ϕ is lower bounded, then ϕ is coercive.

Proof. On the contrary, suppose that ϕ is not coercive. Then there exists a
λ0 ∈ Λ such that limpλ0(u)→∞ϕ(u) = c ∈ R. Thus, for each n ∈ N, there exists

un ∈ X with pλ0(un) ≥ 2n and ϕ(un) ≤ c + 1
n . By Corollary 2.2, for every

n ∈ N, there exists vn ∈ X such that for any λ ∈ Λ

(5)
nc+ 1

n2
pλ(un − vn) ≤ ϕ(un)− ϕ(vn),

and for each u ̸= vn, there exists α ∈ Λ such that

nc+ 1

n2
pα(u− vn) > ϕ(vn)− ϕ(u).

Thus we have

(6) ϕ(vn) ≤ ϕ(un) ≤ c+
1

n
for each n = 1, 2, . . . .

Therefore, {ϕ(vn)} is bounded. With (5) and (6), we have pλ0(un−vn) ≤ n.
Since pλ0(un) ≥ 2n,

pλ0(vn) ≥ pλ0(un)− pλ0(un − vn) ≥ 2n− n ≥ n.

Therefore, {vn} has no convergent subsequence.
Let u ∈ X with u ̸= 0. Then there exists α ∈ Λ such that for t > 0,

nc+ 1

n2
>

ϕ(vn)− ϕ(vn + tu)

pα(vn + tu− vn)
=

ϕ(vn)− ϕ(vn + tu)

tpα(u)
.

Thus we have

ϕ(vn)− ϕ(vn + tu)

t
<

nc+ 1

n2
pα(u) ≤

nc+ 1

n2
p(u).

So

−ϕ
′
(vn)(u) = lim

t→0+

ϕ(vn)− ϕ(vn + tu)

t
≤ nc+ 1

n2
p(u).

Also,

−ϕ
′
(vn)(−u) ≤ nc+ 1

n2
p(−u).
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Therefore

|ϕ
′
(vn)| = sup

p(u) ̸=0

|ϕ′
(vn)(u)|
p(u)

≤ nc+ 1

n2
→ 0 as n → ∞.

This shows that ϕ does not satisfy Palais-Smale condition, a contradiction. □
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