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FUZZY STABILITY OF A CUBIC-QUARTIC FUNCTIONAL

EQUATION: A FIXED POINT APPROACH

Sun-Young Jang, Choonkil Park, and Dong Yun Shin

Abstract. Using the fixed point method, we prove the generalized Hyers-
Ulam stability of the following cubic-quartic functional equation

f(2x+ y) + f(2x− y) = 3f(x+ y) + f(−x− y) + 3f(x− y) + f(y − x)

(0.1)

+ 18f(x) + 6f(−x)− 3f(y)− 3f(−y)
in fuzzy Banach spaces.

1. Introduction and preliminaries

The theory of fuzzy space has much progressed as the theory of randomness
has developed. Some mathematicians have defined fuzzy norms on a vector
space from various points of view [2, 11, 20, 24, 37]. Following Cheng and
Mordeson [7], Bag and Samanta [2] gave an idea of fuzzy norm in such a
manner that the corresponding fuzzy metric is of Kramosil and Michalek type
[19] and investigated some properties of fuzzy normed spaces [3].

We use the definition of fuzzy normed spaces given in [2, 24, 25] to investi-
gate a fuzzy version of the generalized Hyers-Ulam stability for the functional
equation (0.1) in the fuzzy normed vector space setting.

Definition 1.1 ([2, 24, 25, 26]). Let X be a real vector space. A function
N : X × R → [0, 1] is called a fuzzy norm on X if for all x, y ∈ X and all
s, t ∈ R,

(N1) N(x, t) = 0 for t ≤ 0;
(N2) x = 0 if and only if N(x, t) = 1 for all t > 0;
(N3) N(cx, t) = N(x, t

|c| ) if c ̸= 0;

(N4) N(x+ y, s+ t) ≥ min{N(x, s), N(y, t)};
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(N5) N(x, ·) is a non-decreasing function of R and limt→∞ N(x, t) = 1;
(N6) for x ̸= 0, N(x, ·) is continuous on R.

The pair (X,N) is called a fuzzy normed vector space.
The properties of fuzzy normed vector spaces and examples of fuzzy norms

are given in [24, 23].

Definition 1.2 ([2, 24, 25, 26]). Let (X,N) be a fuzzy normed vector space.
A sequence {xn} in X is said to be convergent or converge if there exists an
x ∈ X such that limn→∞ N(xn −x, t) = 1 for all t > 0. In this case, x is called
the limit of the sequence {xn} and we denote it by N -limn→∞ xn = x.

Definition 1.3 ([2, 24, 25]). Let (X,N) be a fuzzy normed vector space. A
sequence {xn} inX is called Cauchy if for each ε > 0 and each t > 0 there exists
an n0 ∈ N such that for all n ≥ n0 and all p > 0, we haveN(xn+p−xn, t) > 1−ε.

It is well-known that every convergent sequence in a fuzzy normed vector
space is Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is
said to be complete and the fuzzy normed vector space is called a fuzzy Banach
space.

We say that a mapping f : X → Y between fuzzy normed vector spaces X
and Y is continuous at a point x0 ∈ X if for each sequence {xn} converging to
x0 in X, the sequence {f(xn)} converges to f(x0). If f : X → Y is continuous
at each x ∈ X, f : X → Y is said to be continuous on X (see [3]).

The stability problem of functional equations originated from a question of
Ulam [36] concerning the stability of group homomorphisms. Hyers [13] gave
a first affirmative partial answer to the question of Ulam for Banach spaces.
Hyers’ Theorem was generalized by Aoki [1] for additive mappings and by
Th. M. Rassias [33] for linear mappings by considering an unbounded Cauchy
difference. The paper of Th. M. Rassias [33] has provided a lot of influence in
the development of what we call generalized Hyers-Ulam stability or as Hyers-
Ulam-Rassias stability of functional equations. A generalization of the Th. M.
Rassias theorem was obtained by Găvruta [12] by replacing the unbounded
Cauchy difference by a general control function in the spirit of Th. M. Rassias’
approach.

The functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y)

is called a quadratic functional equation. In particular, every solution of the
quadratic functional equation is said to be a quadratic function. A generalized
Hyers-Ulam stability problem for the quadratic functional equation was proved
by Skof [35] for mappings f : X → Y , where X is a normed space and Y is
a Banach space. Cholewa [8] noticed that the theorem of Skof is still true if
the relevant domain X is replaced by an Abelian group. Czerwik [9] proved
the generalized Hyers-Ulam stability of the quadratic functional equation. The
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stability problems of several functional equations have been extensively investi-
gated by a number of authors and there are many interesting results concerning
this problem (see [14, 17], [29]–[31], [34]).

In [16], Jun and Kim considered the following cubic functional equation

(1.1) f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x).

It is easy to show that the function f(x) = x3 satisfies the functional equation
(1.1), which is called a cubic functional equation and every solution of the cubic
functional equation is said to be a cubic mapping.

In [21], Lee et al. considered the following quartic functional equation

(1.2) f(2x+ y) + f(2x− y) = 4f(x+ y) + 4f(x− y) + 24f(x)− 6f(y).

It is easy to show that the function f(x) = x4 satisfies the functional equation
(1.2), which is called a quartic functional equation and every solution of the
quartic functional equation is said to be a quartic mapping.

The functional equation (0.1) is a cubic-quartic functional equation because
(0.1) is quartic when f(x) is a even function and (0.1) is cubic when f(x) is a
odd function.

We recall a fundamental result in fixed point theory.
Let X be a set. A function d : X×X → [0,∞] is called a generalized metric

on X if d satisfies
(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Theorem 1.4 ([4, 10]). Let (X, d) be a complete generalized metric space and
let J : X → X be a strictly contractive mapping with Lipschitz constant L < 1.
Then for each given element x ∈ X, either

d(Jnx, Jn+1x) = ∞
for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) < ∞, ∀n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) < ∞};
(4) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Y .

In 1996, G. Isac and Th. M. Rassias [15] were the first to provide applica-
tions of new fixed point theorems for the proof of stability theory of functional
equations. By using fixed point methods, the stability problems of several func-
tional equations have been extensively investigated by a number of authors (see
[5, 6, 23, 27, 28, 32]).

This paper is organized as follows: In Section 2, we prove the generalized
Hyers-Ulam stability of the cubic-quartic functional equation (0.1) in fuzzy
Banach spaces for an odd mapping case. In Section 3, we prove the generalized
Hyers-Ulam stability of the cubic-quartic functional equation (0.1) in fuzzy
Banach spaces for an even mapping case.
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Throughout this paper, assume that X is a vector space and that (Y,N) is
a fuzzy Banach space.

2. Generalized Hyers-Ulam stability of the functional equation
(0.1): an odd mapping case

One can easily show that an even mapping f : X → Y satisfies (0.1) if and
only if the even mapping f : X → Y is a quartic mapping, i.e.,

f(2x+ y) + f(2x− y) = 4f(x+ y) + 4f(x− y) + 24f(x)− 6f(y),

and that an odd mapping f : X → Y satisfies (0.1) if and only if the odd
mapping f : X → Y is a cubic mapping, i.e.,

f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x).

For a given mapping f : X → Y , we define

Df(x, y) := f(2x+ y) + f(2x− y)− 3f(x+ y)− f(−x− y)− 3f(x− y)

− f(y − x)− 18f(x)− 6f(−x) + 3f(y) + 3f(−y)

for all x, y ∈ X.
Using the fixed point method, we prove the generalized Hyers-Ulam stability

of the functional equation Df(x, y) = 0 in fuzzy Banach spaces: an odd case.

Theorem 2.1. Let φ : X2 → [0,∞) be a function such that there exists an
L < 1 with

φ(x, y) ≤ L

8
φ (2x, 2y)

for all x, y ∈ X. Let f : X → Y be an odd mapping satisfying

(2.1) N (Df(x, y), t) ≥ t

t+ φ(x, y)

for all x, y ∈ X and all t > 0. Then C(x) := N -limn→∞ 8nf
(

x
2n

)
exists for

each x ∈ X and defines a cubic mapping C : X → Y such that

(2.2) N (f(x)− C(x), t) ≥ (16− 16L)t

(16− 16L)t+ Lφ(x, 0)

for all x ∈ X and all t > 0.

Proof. Letting y = 0 in (2.1), we get

(2.3) N (2f (2x)− 16f(x), t) ≥ t

t+ φ(x, 0)

for all x ∈ X.
Consider the set

S := {g : X → Y }
and introduce the generalized metric on S:

d(g, h) = inf{µ ∈ R+ : N(g(x)− h(x), µt) ≥ t

t+ φ(x, 0)
, ∀x ∈ X, ∀t > 0},
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where, as usual, inf ϕ = +∞. It is easy to show that (S, d) is complete (See
the proof of [22, Lemma 2.1]).

Now we consider the linear mapping J : S → S such that

Jg(x) := 8g
(x
2

)
for all x ∈ X.

Let g, h ∈ S be given such that d(g, h) = ε. Then

N(g(x)− h(x), εt) ≥ t

t+ φ(x, 0)

for all x ∈ X and all t > 0. Hence

N(Jg(x)− Jh(x), Lεt) = N
(
8g

(x
2

)
− 8h

(x
2

)
, Lεt

)
= N

(
g
(x
2

)
− h

(x
2

)
,
L

8
εt

)
≥

Lt
8

Lt
8 + φ

(
x
2 , 0

)
≥

Lt
8

Lt
8 + L

8φ(x, 0)

=
t

t+ φ(x, 0)

for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This
means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.
It follows from (2.3) that

N

(
f(x)− 8f

(x
2

)
,
L

16
t

)
≥ t

t+ φ(x, 0)

for all x ∈ X and all t > 0. So d(f, Jf) ≤ L
16 .

By Theorem 1.4, there exists a mapping C : X → Y satisfying the following:
(1) C is a fixed point of J , i.e.,

(2.4) C
(x
2

)
=

1

8
C(x)

for all x ∈ X. Since f : X → Y is odd, C : X → Y is an odd mapping. The
mapping C is a unique fixed point of J in the set

M = {g ∈ S : d(f, g) < ∞}.
This implies that C is a unique mapping satisfying (2.4) such that there exists
a µ ∈ (0,∞) satisfying

N(f(x)− C(x), µt) ≥ t

t+ φ(x, 0)
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for all x ∈ X;
(2) d(Jnf, C) → 0 as n → ∞. This implies the equality

N - lim
n→∞

8nf
( x

2n

)
= C(x)

for all x ∈ X;
(3) d(f, C) ≤ 1

1−Ld(f, Jf), which implies the inequality

d(f, C) ≤ L

16− 16L
.

This implies that the inequality (2.2) holds.
By (2.1),

N
(
8nDf

( x

2n
,
y

2n

)
, 8nt

)
≥ t

t+ φ
(

x
2n ,

y
2n

)
for all x, y ∈ X, all t > 0 and all n ∈ N. So

N
(
8nDf

( x

2n
,
y

2n

)
, t
)
≥

t
8n

t
8n + Ln

8n φ (x, y)

for all x, y ∈ X, all t > 0 and all n ∈ N. Since limn→∞
t

8n

t
8n +Ln

8n φ(x,y)
= 1 for all

x, y ∈ X and all t > 0,

N (DC(x, y), t) = 1

for all x, y ∈ X and all t > 0. Thus the mapping C : X → Y is cubic, as
desired. □

Corollary 2.2. Let θ ≥ 0 and let p be a real number and p > 3. Let X be
a normed vector space with norm ∥ · ∥. Let f : X → Y be an odd mapping
satisfying

(2.5) N (Df(x, y), t) ≥ t

t+ θ(∥x∥p + ∥y∥p)

for all x, y ∈ X and all t > 0. Then C(x) := N -limn→∞ 8nf
(

x
2n

)
exists for

each x ∈ X and defines a cubic mapping C : X → Y such that

N (f(x)− C(x), t) ≥ 2(2p − 8)t

2(2p − 8)t+ θ∥x∥p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.1 by taking

φ(x, y) := θ(∥x∥p + ∥y∥p)

for all x, y ∈ X. Then we can choose L = 23−p and we get the desired result. □

Theorem 2.3. Let φ : X2 → [0,∞) be a function such that there exists an
L < 1 with

φ(x, y) ≤ 8Lφ
(x
2
,
y

2

)
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for all x, y ∈ X. Let f : X → Y be an odd mapping satisfying (2.1). Then
C(x) := N -limn→∞

1
8n f (2nx) exists for each x ∈ X and defines a cubic map-

ping C : X → Y such that

(2.6) N (f(x)− C(x), t) ≥ (16− 16L)t

(16− 16L)t+ φ(x, 0)

for all x ∈ X and all t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theo-
rem 2.1.

Consider the linear mapping J : S → S such that

Jg(x) :=
1

8
g (2x)

for all x ∈ X.
Let g, h ∈ S be given such that d(g, h) = ε. Then

N(g(x)− h(x), εt) ≥ t

t+ φ(x, 0)

for all x ∈ X and all t > 0. Hence

N(Jg(x)− Jh(x), Lεt) = N

(
1

8
g (2x)− 1

8
h (2x) , Lεt

)
= N (g (2x)− h (2x) , 8Lεt)

≥ 8Lt

8Lt+ φ (2x, 0)

≥ 8Lt

8Lt+ 8Lφ(x, 0)

=
t

t+ φ(x, 0)

for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This
means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.
It follows from (2.3) that

N

(
f(x)− 1

8
f(2x),

1

16
t

)
≥ t

t+ φ(x, 0)

for all x ∈ X and all t > 0. So d(f, Jf) ≤ 1
16 .

By Theorem 1.4, there exists a mapping C : X → Y satisfying the following:
(1) C is a fixed point of J , i.e.,

(2.7) C (2x) = 8C(x)
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for all x ∈ X. Since f : X → Y is odd, C : X → Y is an odd mapping. The
mapping C is a unique fixed point of J in the set

M = {g ∈ S : d(f, g) < ∞}.

This implies that C is a unique mapping satisfying (2.7) such that there exists
a µ ∈ (0,∞) satisfying

N(f(x)− C(x), µt) ≥ t

t+ φ(x, 0)

for all x ∈ X;
(2) d(Jnf, C) → 0 as n → ∞. This implies the equality

N - lim
n→∞

1

8n
f (2nx) = C(x)

for all x ∈ X;
(3) d(f, C) ≤ 1

1−Ld(f, Jf), which implies the inequality

d(f, C) ≤ 1

16− 16L
.

This implies that the inequality (2.6) holds.
The rest of the proof is similar to the proof of Theorem 2.1. □

Corollary 2.4. Let θ ≥ 0 and let p be a real number and 0 < p < 3. Let X
be a normed vector space with norm ∥ · ∥. Let f : X → Y be an odd mapping
satisfying (2.5). Then C(x) := N -limn→∞

1
8n f (2nx) exists for each x ∈ X and

defines a cubic mapping C : X → Y such that

N (f(x)− C(x), t) ≥ 2(8− 2p)t

2(8− 2p)t+ θ∥x∥p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.3 by taking

φ(x, y) := θ(∥x∥p + ∥y∥p)

for all x, y ∈ X. Then we can choose L = 2p−3 and we get the desired result. □

3. Generalized Hyers-Ulam stability of the functional equation
(0.1): an even mapping case

Using the fixed point method, we prove the generalized Hyers-Ulam stability
of the functional equation Df(x, y) = 0 in fuzzy Banach spaces: an even case.

Theorem 3.1. Let φ : X2 → [0,∞) be a function such that there exists an
L < 1 with

φ(x, y) ≤ L

16
φ (2x, 2y)
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for all x, y ∈ X. Let f : X → Y be an even mapping satisfying f(0) = 0 and
(2.1). Then Q(x) := N -limn→∞ 16nf

(
x
2n

)
exists for each x ∈ X and defines a

quartic mapping Q : X → Y such that

(3.1) N (f(x)−Q(x), t) ≥ (32− 32L)t

(32− 32L)t+ Lφ(x, 0)

for all x ∈ X and all t > 0.

Proof. Letting y = 0 in (2.1), we get

(3.2) N (2f (2x)− 32f(x), t) ≥ t

t+ φ(x, 0)

for all x ∈ X.
Let (S, d) be the generalized metric space defined in the proof of Theorem

2.1.
Now we consider the linear mapping J : S → S such that

Jg(x) := 16g
(x
2

)
for all x ∈ X.

Let g, h ∈ S be given such that d(g, h) = ε. Then

N(g(x)− h(x), εt) ≥ t

t+ φ(x, 0)

for all x ∈ X and all t > 0. Hence

N(Jg(x)− Jh(x), Lεt) = N
(
16g

(x
2

)
− 16h

(x
2

)
, Lεt

)
= N

(
g
(x
2

)
− h

(x
2

)
,
L

16
εt

)
≥

Lt
16

Lt
16 + φ

(
x
2 , 0

)
≥

Lt
16

Lt
16 + L

16φ(x, 0)

=
t

t+ φ(x, 0)

for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This
means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.
It follows from (3.2) that

N

(
f(x)− 16f

(x
2

)
,
L

32
t

)
≥ t

t+ φ(x, 0)

for all x ∈ X and all t > 0. So d(f, Jf) ≤ L
32 .

By Theorem 1.4, there exists a mapping Q : X → Y satisfying the following:



500 S. JANG, C. PARK, AND D. SHIN

(1) Q is a fixed point of J , i.e.,

(3.3) Q
(x
2

)
=

1

16
Q(x)

for all x ∈ X. Since f : X → Y is even, Q : X → Y is an even mapping. The
mapping Q is a unique fixed point of J in the set

M = {g ∈ S : d(f, g) < ∞}.

This implies that Q is a unique mapping satisfying (3.3) such that there exists
a µ ∈ (0,∞) satisfying

N(f(x)−Q(x), µt) ≥ t

t+ φ(x, 0)

for all x ∈ X;
(2) d(Jnf,Q) → 0 as n → ∞. This implies the equality

N - lim
n→∞

16nf
( x

2n

)
= Q(x)

for all x ∈ X;
(3) d(f,Q) ≤ 1

1−Ld(f, Jf), which implies the inequality

d(f,Q) ≤ L

32− 32L
.

This implies that the inequality (3.1) holds.
The rest of the proof is similar to the proof of Theorem 2.1. □

Corollary 3.2. Let θ ≥ 0 and let p be a real number and p > 4. Let X be
a normed vector space with norm ∥ · ∥. Let f : X → Y be an even mapping
satisfying f(0) = 0 and (2.5). Then Q(x) := N -limn→∞ 16nf

(
x
2n

)
exists for

each x ∈ X and defines a quartic mapping Q : X → Y such that

N (f(x)−Q(x), t) ≥ 2(2p − 16)t

2(2p − 16)t+ θ∥x∥p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 3.1 by taking

φ(x, y) := θ(∥x∥p + ∥y∥p)

for all x, y ∈ X. Then we can choose L = 24−p and we get the desired result. □

Similarly, we can obtain the following. We will omit the proof.

Theorem 3.3. Let φ : X2 → [0,∞) be a function such that there exists an
L < 1 with

φ(x, y) ≤ 16Lφ
(x
2
,
y

2

)



FUZZY STABILITY OF CUBIC-QUARTIC FUNCTIONAL EQUATION 501

for all x, y ∈ X. Let f : X → Y be an even mapping satisfying f(0) = 0 and
(2.1). Then Q(x) := N -limn→∞

1
16n f (2nx) exists for each x ∈ X and defines

a quartic mapping Q : X → Y such that

N (f(x)−Q(x), t) ≥ (32− 32L)t

(32− 32L)t+ φ(x, 0)

for all x ∈ X and all t > 0.

Corollary 3.4. Let θ ≥ 0 and let p be a real number and 0 < p < 4. Let X
be a normed vector space with norm ∥ · ∥. Let f : X → Y be an even mapping
satisfying f(0) = 0 and (2.5). Then Q(x) := N -limn→∞

1
16n f (2nx) exists for

each x ∈ X and defines a quartic mapping Q : X → Y such that

N (f(x)−Q(x), t) ≥ 2(16− 2p)t

2(16− 2p)t+ θ∥x∥p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 3.3 by taking

φ(x, y) := θ(∥x∥p + ∥y∥p)
for all x, y ∈ X. Then we can choose L = 2p−4 and we get the desired result. □
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