DOI QR코드

DOI QR Code

AN EKELAND TYPE VARIATIONAL PRINCIPLE ON GAUGE SPACES WITH APPLICATIONS TO FIXED POINT THEORY, DROP THEORY AND COERCIVITY

  • Received : 2010.03.19
  • Published : 2011.09.30

Abstract

In this paper, a new Ekeland type variational principle on gauge spaces is established. As applications, we give Caristi-Kirk type fixed point theorems on gauge spaces, and Dane$\check{s}$' drop theorem on seminormed spaces. Also, we show that the Palais-Smale condition implies coercivity on semi-normed spaces.

Keywords

References

  1. R. P. Agarwal and D. O.'Regan, Fixed -point theorems for multivalued maps with closed values on complete gauge spaces, Appl. Math. Lett. 14 (2001), no. 7, 831-836. https://doi.org/10.1016/S0893-9659(01)00052-0
  2. S. Al-Homidan, Q. H. Ansari, and J. C. Yao, Some generalizations of Ekeland-type variational principle with applications to equilibrium problems and fixed point theory, Nonlinear Anal. 69 (2008), no. 1, 126-139. https://doi.org/10.1016/j.na.2007.05.004
  3. J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhauser, Boston, Berlin, 1990.
  4. M. Bianchi, G. Kassay, and R. Pini, Existence of equilibria via Ekeland's principle, J. Math. Anal. Appl. 305 (2005), no. 2, 502-512. https://doi.org/10.1016/j.jmaa.2004.11.042
  5. H. Brezis and F. E. Browder, A general principle on ordered sets in nonlinear functional analysis, Advances in Math. 21 (1976), no. 3, 355-364. https://doi.org/10.1016/S0001-8708(76)80004-7
  6. F. E. Browder, Normal solvability and the Fredholm alternative for mappings into infi- nite dimensional manifolds, J. Funct. Anal. 8 (1971), 250-274. https://doi.org/10.1016/0022-1236(71)90012-7
  7. G. L. Cain Jr and M. Z. Nashed, Fixed points and stability for a sum of two operators in locally convex spaces, Pacific J. Math. 39 (1971), 581-592. https://doi.org/10.2140/pjm.1971.39.581
  8. L. Caklovic, S. Li, and M. Willem, A note on Palais-Smale condition and coercivity, Differential Integral Equations 3 (1990), no. 4, 799-800.
  9. F. Cammaroto, A. Chinni, and G. Sturiale, A remark on Ekeland's principle in locally convex topological vector spaces, Mathematical and Computer Modeling 30 (1990), 75- 79.
  10. L. Cheng, Y. Zhou, and F. Zhang, Danes' drop theorem in locally convex spaces, Proc. Amer. Math. Soc. 124 (1996), no. 12, 3699-3702. https://doi.org/10.1090/S0002-9939-96-03404-1
  11. J. Danes, A geometric theorem useful in nonlinear functional analysis, Boll. Un. Mat. Ital. (4) 6 (1972), 369-372.
  12. J. Danes, Equivalence of some geometric and related results of nonlinear functional anal- ysis, Comment. Math. Univ. Carolin. 26 (1985), no. 3, 443-454.
  13. D. G. De Figueiredo, The Ekeland Variational Principle with Applications and Detours, Tata Institue of Fundamental esearch, Bombay, 1989.
  14. S. Dolecki and J. P. Penot, The Clark's tangent cone and limits of tangent cones, Publ. Math. Pau 2 (1983), 1-11.
  15. J. Dugundji, Topology, Ally and Bacon, Boston, 1966.
  16. I. Ekeland, Sur les problemes variationnels, C. R. Acad. Sci. Paris Ser. A-B 275 (1972), 1057-1059.
  17. I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324-353. https://doi.org/10.1016/0022-247X(74)90025-0
  18. I. Ekeland, On convex minimization problems, Bull. Amer. Math. Soc. 1 no. 3 (1979), 445-474.
  19. R. Espinola and W. A. Kirk, Set-valued contractions and fixed points, Nonlinear Anal. 54 (2003), no. 3, 485-494. https://doi.org/10.1016/S0362-546X(03)00107-X
  20. J. X. Fang and X. Y. Lin, Fixed point theorems for set-valued $\Phi$-generalized contractions on gauge spaces, Nonlinear Anal. 69 (2008), no. 1, 201-207. https://doi.org/10.1016/j.na.2007.05.011
  21. M. Frigon, Fixed point results for generalized contractions in gauge spaces and applica- tion, Proc. Amer. Math. Soc. 128 (2000), no. 10, 2957-2965. https://doi.org/10.1090/S0002-9939-00-05838-X
  22. J. R. Giles and D. N. Kutzarova, Characterisation of drop and weak drop properties for closed bounded convex sets, Bull. Austral. Math. Soc. 43 (1991), no. 3, 377-385. https://doi.org/10.1017/S000497270002921X
  23. J. R. Giles, B. Sims, and A. C. Yorke, On the drop and weak drop properties for a Banach space, Bull. Austral. Math. Soc. 41 (1990), no. 3, 503-507. https://doi.org/10.1017/S0004972700018384
  24. A. Gopfert, Chr. Tammer, H. Riahi, and C. Zalinescu, Variational Method in Partially Ordered Spaces, Springer-Verlag, New York, Berlin, Heidelberg, 2003.
  25. D. N. Kutzarova, On drop property of convex sets in Banach space, in "Constructive Theory of Functions '87, Sofa", 283-287.
  26. S. Li, An existence theorem on multiple critical points and its application in nonlinear PDE, Acta Mathematica Scientica 4 (1984).
  27. J. P. Penot, The drop theorem, the petal theorem and Ekeland's variational principle, Nonlinear Anal. 10 (1986), no. 9, 813-822. https://doi.org/10.1016/0362-546X(86)90069-6
  28. R. R. Phelps, Convex Functions, Monotone operators and Differentiability, Springer- Verlag, New York, Berlin, Heidelberg-New York, 1989.
  29. J. Qiu, Local completeness and Drop theorem, J. Math. Anal. Appl. 266 (2002), no. 2, 288-297. https://doi.org/10.1006/jmaa.2001.7709
  30. J. Qiu, A version of Ekeland's variational principle in countable semi-normed spaces, J. Math. Res. Exposition 24 (2004), no. 1, 1-6.
  31. J. H. Qiu and S. Rolewicz, Local completeness of locally pseudoconvex spaces and Borwein-Preiss variational principle, Studia Math. 183 (2007), no. 2, 99-115. https://doi.org/10.4064/sm183-2-1
  32. J. H. Qiu and S. Rolewicz, Ekeland's variational principle in locally p-convex spaces and related results, Studia Math. 186 (2008), no. 3, 219-235. https://doi.org/10.4064/sm186-3-2
  33. S. Rolewicz, On drop property, Studia Math. 85 (1987), 27-35.
  34. W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, Japan, 2000.
  35. M. Turinici, Mapping theorems via variable drops in Banach spaces, Istit. Lombardo Accad. Sci. Lett. Rend. A 114 (1980), 164-168.
  36. X. Y. Zheng, A drop theorem in topological linear spaces, Chinese Ann. Math. Ser. A 21 (2000), no. 2, 141-148.