• Title/Summary/Keyword: Finsler manifold

Search Result 41, Processing Time 0.018 seconds

Finsler Metrics Compatible With A Special Riemannian Structure

  • Park, Hong-Suh;Park, Ha-Yong;Kim, Byung-Doo
    • Communications of the Korean Mathematical Society
    • /
    • v.15 no.2
    • /
    • pp.339-348
    • /
    • 2000
  • We introduce the notion of the Finsler metrics compat-ible with a special Riemannian structure f of type (1,1) satisfying f6+f2=0 and investigate the properties of Finsler space with them.

  • PDF

VANISHING OF PROJECTIVE VECTOR FIELDS ON COMPACT FINSLER MANIFOLDS

  • Shen, Bin
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.1-16
    • /
    • 2018
  • In this paper, we give characteristic differential equations of a kind of projective vector fields on Finsler manifolds. Using these equations, we prove the vanishing theorem of projective vector fields on any compact Finsler manifold with the negative mean Ricci curvature, which is defined in [10]. This result involves the vanishing theorem of Killing vector fields in the Riemannian case and the work of [1, 14].

COMPARISON THEOREMS IN RIEMANN-FINSLER GEOMETRY WITH LINE RADIAL INTEGRAL CURVATURE BOUNDS AND RELATED RESULTS

  • Wu, Bing-Ye
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.421-437
    • /
    • 2019
  • We establish some Hessian comparison theorems and volume comparison theorems for Riemann-Finsler manifolds under various line radial integral curvature bounds. As their applications, we obtain some results on first eigenvalue, Gromov pre-compactness and generalized Myers theorem for Riemann-Finsler manifolds under suitable line radial integral curvature bounds. Our results are new even in the Riemannian case.

ON THE SYNGE'S THEOREM FOR COMPLEX FINSLER MANIFOLDS

  • Won, Dae-Yeon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.1
    • /
    • pp.137-145
    • /
    • 2004
  • In [13], we developed a theory of complex Finsler manifolds to investigate the global geometry of complex Finsler manifolds. There we proved a version of Bonnet-Myers' theorem for complex Finsler manifolds with a certain condition on the Finsler metric which is a generalization of the Kahler condition for the Hermitian metric. In this paper, we show that if the holomorphic sectional curvature of M is ${\geq}\;c^2\;>\;0$, then M is simply connected. This is a generalization of the Synge's theorem in the Riemannian geometry and the Tsukamoto's theorem for Kahler manifolds. The main point of the proof lies in how we can circumvent the convex neighborhood theorem in the Riemannian geometry. A second variation formula of arc length for complex Finsler manifolds is also derived.

THE RANDER CHANGES OF FINSLER SPACES WITH ($\alpha,\beta$)-METRICS OF DOUGLAS TYPE

  • Park, Hong-Suh;Lee, Il-Yong
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.503-521
    • /
    • 2001
  • A change of Finsler metric L(x,y)longrightarrowL(x,y) is called a Randers change of L, if L(x,y) = L(x,y) +$\rho$(x,y), where $\rho$(x,y) = $\rho$(sub)i(x)y(sup)i is a 1-form on a smooth manifold M(sup)n. Let us consider the special Randers change of Finsler metric LlongrightarrowL = L + $\beta$ by $\beta$. On the basis of this special Randers change, the purpose of the present paper is devoted to studying the conditions for Finsler space F(sup)n which are transformed by a special Randers change of Finsler spaces F(sup)n with ($\alpha$,$\beta$)-metrics of Douglas type to be also of Douglas type, and vice versa.

  • PDF

GLOBAL THEORY OF VERTICAL RECURRENT FINSLER CONNECTION

  • Soleiman, Amr
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.593-607
    • /
    • 2021
  • The aim of the present paper is to establish an intrinsic generalization of Cartan connection in Finsler geometry. This connection is called the vertical recurrent Finsler connection. An intrinsic proof of the existence and uniqueness theorem for such connection is investigated. Moreover, it is shown that for such connection, the associated semi-spray coincides with the canonical spray and the associated nonlinear connection coincides with the Barthel connection. Explicit intrinsic expression relating this connection and Cartan connection is deduced. We also investigate some applications concerning the fundamental geometric objects associated with this connection. Finally, three important results concerning the curvature tensors associated to a special vertical recurrent Finsler connection are studied.

MYLLER CONFIGURATIONS IN FINSLER SPACES. APPLICATIONS TO THE STUDY OF SUBSPACES AND OF TORSE FORMING VECTOR FIELDS

  • Constantinescu, Oana
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.5
    • /
    • pp.1443-1482
    • /
    • 2008
  • In this paper we define a Myller configuration in a Finsler space and use some special configurations to obtain results about Finsler subspaces. Let $F^{n}$ = (M,F) be a Finsler space, with M a real, differentiable manifold of dimension n. Using the pull back bundle $({\pi}^{*}TM,\tilde{\pi},\widetilde{TM})$ of the tangent bundle $(TM,{\pi},M)$ by the mapping $\tilde{\pi}={\pi}/TM$ and the Cartan Finsler connection of a Finsler space, we obtain an orthonormal frame of sections of ${\pi}^{*}TM$ along a regular curve in $\widetilde{TM}$ and a system of invariants, geometrically associated to the Myller configuration. The fundamental equations are written in a very simple form and we prove a fundamental theorem. Important lines in a Finsler subspace are defined like special lines in a Myller configuration, geometrically associated to the subspace: auto parallels, lines of curvature, asymptotes. Torse forming vector fields with respect to the Cartan Finsler connection are characterized by means of the invariants of the Frenet frame of a versor field along a curve, and the new notion of torse forming vector fields in the sense of Myller is introduced. The particular cases of concurrence and parallelism in the sense of Myller are completely studied, for vector fields from the distribution $T^m$ of the Myller configuration and also from the normal distribution $T^p$.