Pusan Kyŏngnam Math. J 11(1995), No. 2, pp 315-319

ON A GENERALIZED ALMOST KAEHLERIAN FINSLER MANIFOLD

HONG-SUH PARK

1. Introduction

Let M be a 2n-dimensional differential manifold admitting an almost complex structure $f_{i}(x)$ and a Finsler metric $g_{i}(x, y)$ given by

(1.1)
$$g_{ij}(x,y) = \frac{1}{2} \dot{\partial}_i \dot{\partial}_j L^2(x,y),$$

where $\dot{\partial}_i = \partial/\partial y^i$.

If the fundamental function L(x, y) satisfies the so called Rizza condition, that is,

$$(1.2) L(x,\phi_{\theta}y) = L(x,y)$$

for any $\theta \in R$, where

$$\phi_{\theta^{i}_{j}} = \cos\theta \cdot \delta^{i}_{i} + \sin\theta \cdot f^{i}_{j},$$

then M is called an almost Hermitian Finsler manifold or simply a Rizza manifold. The almost Hermitian Finsler structure $(f_j^i(x), g_{ij}(x, y))$ was introduced by G. B. Rizza [5]. Afterword, it was studied by some authors. In [1] M. Fukui has proved that if $g_{ij}(x, y)$ and $f_j^i(x)$ satisfies the condition

$$g_{ij}(x,y) - g_{pq}(x,y)f^{p}_{i}(x)f^{q}_{j}(x) = 0,$$

then g_{ij} is a Riemannian metric, that is, (f_{j}^{i}, g_{ij}) is an almost Hermitian structure. In [2] it is known that the Rizza condition (1.2) is equivalent to any one of the following

- (1) $g_{pq}(x,\phi_{\theta}y)\phi_{\theta}{}^{p},\phi_{\theta}{}^{q}{}_{j}=g_{ij}(x,y),$
- (2) $g_{ij}(x,y)f^{i}_{k}(x)y^{k}y^{j} = 0,$
- (3) $(g_{im}(x,y) g_{pq}f^{p}_{i}(x)f^{q}_{m}(x))y^{m} = 0,$
- (4) $g_{im}(x,y)f^{m}{}_{j}(x) + g_{jm}(x,y)f^{m}{}_{i}(x) + 2C_{ijm}(x,y)f^{m}{}_{r}(x)y^{r} = 0.$

Received November 7, 1995

We define in the present paper a generalized Finsler connection $\tilde{\Gamma}$ and a generalized almost Kaehlerian Finsler manifold with respect to $\tilde{\Gamma}$.

The purpose of the preset paper is to study the generalized almost Kaehlerian Finsler manifold.

Throughout the present paper we shall use the terminology and notations in Matsumoto's monograph [3].

2. A Generalized Finsler connection

Let M be an almost Hermitian Finsler manifold with the Rizza structure $(f_{j}^{i}(x), g_{ij}(x, y))$. If we put

(2.1)
$$\tilde{g}_{ij} = \frac{1}{2}(g_{ij}(x,y) + g_{pq}(x,y)f^{p}_{i}(x)f^{q}_{j}(x)),$$

then \tilde{g}_{ij} is a homogeneous symmetric Finsler metric, which is called a generalized Finsler metric induced from the Finsler metric g_{ij} . It should easily verified that

$$\tilde{g}_{\imath\jmath}(x,y)=\tilde{g}_{pq}(x,y)f^{p}{}_{\imath}(x)f^{q}{}_{j}(x),$$

from which

(2.2)
$$\tilde{g}_{im}(x,y)f^{m}{}_{j}(x) = -\tilde{g}_{jm}(x,y)f^{m}{}_{i}(x).$$

Concerning the reciprocal tensor $\tilde{g}^{ij}(x,y)$ of $\tilde{g}_{ij}(x,y)$, we could prove

(2.3)
$$\tilde{g}^{ij}(x,y) = \tilde{g}^{kl}(x,y)f^{i}_{k}(x)f^{i}_{l}(x)$$

from which

$$\tilde{g}^{ik}(x,y)f^{i}_{k}(x) = -\tilde{g}^{jk}(x,y)f^{i}_{k}(x).$$

Now we put

(2.4)
$$f_{ij}(x,y) = g_{im}(x,y)f^{m}_{j},$$

(2.5)
$$\tilde{f}_{ij}(x,y) = \tilde{g}_{im}(x,y)f^m_{j}.$$

316

By virtue of (2.2) we have

(2.6)
$$\tilde{f}_{ij}(x,y) = -\tilde{f}_{ji}(x,y), \qquad \tilde{f}_{im}(x,y)f^{m}_{\ j}(x) = -\tilde{g}_{ij}(x,y), \\ \tilde{f}_{ij}(x,y) = \frac{1}{2}(f_{ij}(x,y) - f_{ji}(x,y)).$$

Let us consider such connection that

(2.7)
$$\tilde{\Gamma}_{j}{}^{i}{}_{k} = \frac{1}{2}\tilde{g}^{im}(X_{k}\tilde{g}_{jm} + X_{j}\tilde{g}_{mk} - X_{m}\tilde{g}_{kj}),$$

where $X_k = \partial_k - N^l{}_k(x, y)\dot{\partial}_l$, $N^l{}_k$ is a non linear connection and $\partial_k = \partial/\partial x$. Then $\tilde{\Gamma}_j{}^i{}_k$ is symmetric and satisfies the transformation rule of a linear connection. So, we represent by $\tilde{\nabla}_k$ the *h*-covariant derivative with respect to $(\tilde{\Gamma}_j{}^i{}_k, N^i{}_j)$.

For any Finsler tensor $T^{i}{}_{j}(x,y)$ of (1,1)-type, the *h*-covariant derivative with respect to $(\tilde{\Gamma}_{j}{}^{i}{}_{k}, N^{i}{}_{j})$ are expressed as follows:

$$\tilde{\nabla}_k T^i{}_j = \partial_k T^i{}_j - N^l{}_k \dot{\partial}_l T^i{}_j + \hat{\Gamma}_r{}^i{}_k T^r{}_j - T^i{}_r \tilde{\Gamma}_j{}^r{}_k.$$

Therefore, for the almost complex structure tensor $f_{j}^{i}(x)$

(2.9)
$$\tilde{\nabla}_k f^i{}_j(x) = \partial_k f^i{}_j(x) + \tilde{\Gamma}_r{}^i{}_k f^r{}_j(x) - f^i{}_r(x)\tilde{\Gamma}_j{}^r{}_k.$$

Using (2.7) we obtain

(2.10)
$$\tilde{\nabla}_k \tilde{g}_{ij} = \partial_k \tilde{g}_{ij} - N^l_{\ k} \dot{\partial}_l \tilde{g}_{ij} - X_k \tilde{g}_{ij} = 0.$$

Thus we have

THEOREM 2.1. A Finsler space with a generalized Hermitian structure $(\tilde{\Gamma}_j^{i}_k, N^{i}_j)$ is h-metrical

3. A generalized almost Kaehlerian Finsler manifold

A generalized Hermitian Finsler manifold M with a $(f^{i}_{j}(x), \tilde{g}_{ij}(x, y), N)$ structure satisfying $\tilde{\nabla} f^{i}_{j} = 0$ is called a generalized Kaehlerian Finsler manifold [3], and M satisfying $\tilde{\nabla}_k f^i{}_j + \tilde{\nabla}_j f^i{}_k = 0$ is said a generalized nearly Kaehlerian Finsler manifold.

Now, in a generalized Hermitian Finsler manifold M with $(f^*,(x), \tilde{g}_{ij},(x,y), N)$ -structure, we put

$$\tilde{F}_{ijk} + X_i \tilde{f}_{jk} + X_j \tilde{f}_{ki} + X_k \tilde{f}_{ij},$$

then from (2.6) we have

(3.1)
$$\tilde{F}_{ijk} = \tilde{\nabla}_i \tilde{f}_{jk} + \tilde{\nabla}_j \tilde{f}_{ki} + \tilde{\nabla}_k \tilde{f}_{ij}.$$

A generalized Hermitian Finsler manifold M with a $(f^i_{j}(x), \tilde{g}_{ij}(x, y), N)$ structure satisfying $\tilde{F}_{ijk} = 0$ is called a generalized almost Kaehlerian Finsler manifold, which following the example of complex Riemannian geometry.

On the other hand the Nijenhuis tensor N^{i}_{jk} of almost complex structure $f^{i}_{j}(x)$ is defined as follos [7]:

$$N^{i}_{jk} = (\partial_r f^{i}_{j})f^{r}_{k} - (\partial_r f^{i}_{k})f^{r}_{j} + f^{i}_{r}\partial_j f^{r}_{k} - f^{i}_{r}\partial_k f^{r}_{j}.$$

Substituting (2.9) in the above equation we have

$$N^{i}{}_{jk} = (\tilde{\nabla}_{r}f^{i}{}_{j} - \tilde{\Gamma}_{m}{}^{i}{}_{r}f^{m}{}_{j} + f^{i}{}_{m}\tilde{\Gamma}_{j}{}^{m}{}_{r})f^{r}{}_{k}$$

$$-(\tilde{\nabla}_{r}f^{i}{}_{k} - \tilde{\Gamma}_{m}{}^{i}{}_{r}f^{m}{}_{k} + f^{i}{}_{m}\tilde{\Gamma}_{k}{}^{m}{}_{r})f^{r}{}_{j}$$

$$(3.2) \qquad +f^{i}{}_{r}(\tilde{\nabla}_{j}f^{r}{}_{k} - \tilde{\Gamma}_{m}{}^{r}{}_{j}f^{m}{}_{k} - f^{r}{}_{m}\tilde{\Gamma}_{k}{}^{m}{}_{j})$$

$$-f^{i}{}_{r}(\tilde{\nabla}_{k}f^{r}{}_{j} - \tilde{\Gamma}_{m}{}^{r}{}_{k}f^{m}{}_{j} - f^{r}{}_{m}\tilde{\Gamma}_{j}{}^{m}{}_{k})$$

$$=(\tilde{\nabla}_{r}f^{i}{}_{j})f^{r}{}_{k} - (\tilde{\nabla}_{r}f^{i}{}_{k})f^{r}{}_{j} + f^{i}{}_{r}\tilde{\nabla}_{j}f^{r}{}_{k} - f^{i}{}_{r}\tilde{\nabla}_{k}f^{r}{}_{j}.$$

Moreover let us put $\tilde{N}_{hij} = \tilde{g}_{hm} N^m{}_{ij}$. Then we have

(3.3)
$$\tilde{N}_{hij} = (\tilde{\nabla}_r \tilde{f}_{hi}) f^r{}_j - (\tilde{\nabla}_r \tilde{f}_{hj}) f^r{}_i + \tilde{f}_{hr} \tilde{\nabla}_i f^r{}_j - \tilde{f}_{hr} \tilde{\nabla}_j f^r{}_i$$

by virtue of (2.5) and (2.10).

From (2.6) ,(3.1) and $(\tilde{\nabla}_i \tilde{f}_{hr}) f^r{}_j = \tilde{f}_{hr} \tilde{\nabla}_i f^r{}_j$, (3.3) is reduced to (3.4) $\tilde{N}_{hij} = f^r{}_j \tilde{F}_{rhi} - f^r{}_i \tilde{F}_{rhj} - 2\tilde{f}_{jr} \tilde{\nabla}_h f^r{}_i$.

Since $\tilde{F}_{ijk} = 0$ in a generalized almost Kaehlerian Finsler manifold, we have

$$\tilde{N}_{hij} = -2\tilde{g}_{jm}f^m{}_r\tilde{\nabla}_h f^r{}_i.$$

Thus we have

318

THEOREM 3.1. A generalized almost Kaehlerian Finsler manifold is a generalized Kaehlerian Finsler manifold if and only if $\tilde{N}_{h_{II}} = 0$

From (3.4) we have

$$\tilde{N}_{hij} + \tilde{N}_{ihj} = -f^r_{\,i}\tilde{F}_{rhj} - f^r_{\,h}\tilde{F}_{rij} - 2\tilde{f}_{jr}(\tilde{\nabla}_h f^r_{\,i} + \tilde{\nabla}_i f^r_{\,h}).$$

In a generalized almost Kaehlerian Finsler manifold we get

$$\tilde{N}_{hij} + \tilde{N}_{ihj} = -\tilde{g}_{jm} f^m{}_r (\tilde{\nabla}_h f^r{}_i + \tilde{\nabla}_i f^r{}_h).$$

Thus we have

THEOREM 3.2. A generalized almost Kaehlerian Finsler manifold is a generalized nearly Kaehlerian Finsler manifold if and only if $\tilde{N}_{hij} + \tilde{N}_{ihj} = 0$.

References

- 1. M Fku, Complex Finsler manifolds, J Math. Kyoto Univ., 29 (1989), 609-624
- 2 M Hashiguchi, On generalized Finisler spaces, An Stinit. Univ. Al I. Cuza(Iasi), Sect. Mat. 30-1 (1984), 69-73.
- 3. Y Ichijyo, Finsler metric on almost complex manifolds, Riv. Mat Univ Parma, 14 (1988), 1-28
- 4 M Matsumoto, Foundations of Finsler geometry and special Finsler spaces, Kaiseisha Press, Otsu-shi, Japan, 1993.
- 5. H S Park, On nearly Kaehlerian Finsler manifolds, Tensor N S., 52 (1993), 243-248
- 6. G. B. Rizza, Structure di Finsler sulle varieta quasi complesse, Lincei Rend 33 (1962), 271-275
- 7. K. Yano, Differential geometry on complex and almost complex spaces, Pergamon Press, 1965.

Department of Mathematics Yeungnam University 214-1 Daedong, Gyongsan, Korea.