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FINSLER METRICS WITH REVERSIBLE GEODESICS

Qiaoling Xia

Abstract. In this paper, we give an equivalent characterization for gen-

eral (α, β)-metrics with reversible geodesics when the dimension of the

manifold is greater than 2.

1. Introduction

Recall that a Finsler metric F on a smooth manifold M means a function
F : TM → [0,∞) such that Fx = F |TxM is a Minkowski norm on TxM at each
point x ∈M . In particular, if F (x, y) = F (x,−y) for any y ∈ TxM \{0}, we say
that F is reversible, or F is a reversible Finsler metric. Obviously, a Riemann-
ian metric on M is reversible. However, a Finsler metric is not reversible in
general. For example, Randers metrics F = α+β, one of the simplest and most
important non-Riemannian Finsler metrics, are not reversible, where α is a Rie-
mannian metric and β is a nonzero 1-form on M . Because of the irreversibility
of F , the distance function d induced by F might not be symmetric and the
inverse of a geodesic is not necessarily a geodesic. We say that a Finsler metric
F is said to be with reversible geodesics if, for any oriented geodesic curve, the
same path traversed in the opposite sense is also a geodesic. Equivalently, its
geodesic coefficients Gi(x, y) are projectively equivalent to Gi(x,−y), i.e.,

Gi(x, y) = Gi(x,−y) + Pyi,(1)

where P := P (x, y) is a scalar function on TM \ {0} with P (x, λy) = λP (x, y),
where λ > 0 ([5], [7]). If P = 0, then F is said to be with strictly reversible
geodesics. If Gi(x, y) = Pyi, F is said to be locally projectively flat ([4]). In
recent years, there have been made some new progress on locally projectively
flat Finsler metrics ([2], [4], [9], [6, 10,11] etc. and the references therein).

A smooth manifold M equipped with a Finsler metric F is called a Finsler
space. In particular, a Finsler space (M,F ) is called a reversible Finsler space
if F is reversible. On the other hand, a Finsler space (M,F ) is said to be
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geodesically reversible if F is the Finsler metric with reversible geodesics. A
reversible Finsler space is geodesically reversible, but the converse might not
be true (see examples in [2]). R. Bryant proved that a geodesically reversible
Finsler metric of constant flag curvature on the 2-sphere is necessarily pro-
jectively flat ([3]). As an application, a reversible Finsler metric of constant
flag curvature on the 2-sphere is necessarily a Riemannian metric of constant
Gauss curvature. From this, it is important to study Finsler metrics with re-
versible geodesics since they are closely related with the projective properties
of Finsler metrics. It is known that a Randers metric F = α + β is with re-
versible geodesics if and only if β is closed ([5]). In [7, 8], the authors gave
the necessary and sufficient conditions for (α, β)-metrics F = αφ(β/α) with
reversible geodesics and strictly reversible geodesics respectively, and obtained
some new classes of (α, β)-metrics with reversible geodesics.

A more general class named general (α, β)-metrics were first introduced by
Yu-Zhu in [12] in the following form

F = αφ(b2, s), s =
β

α
,

where α =
√
aij(x)yiyj is a Riemannian metric and β = bi(x)yi is a nonzero

1-form on M with b = ‖β‖α, and φ(b2, s) is a smooth function with some re-
strictions (see (8) in the next section). It is easy to see that F is reversible
if and only if φ(b2, s) = φ(b2,−s), i.e., φ(b2, s) is even in s. If φ(b2, s) only
depends on s and independent of b, then F is just an (α, β)-metric. In present
paper, we give an equivalent characterization for general (α, β)-metrics with
reversible geodesics. As mentioned before, a reversible Finsler space is geodesi-
cally reversible. So we only consider nonreversible general (α, β)-spaces with
reversible geodesics.

Theorem 1.1. Let F = αφ
(
b2, s

)
, s = β/α, be a nonreversible general (α, β)-

metric on an n(≥ 3)-dimensional smooth manifold M . Then F is with re-
versible geodesics if and only if there is a local coordinate system, in which

there are scalar functions k(b2) := −φ12(b
2,0)

φ2(b2,0)
, σ(x) and ki(x)(1 ≤ i ≤ 3) with

k1 + b2k2 = 1 and k1 + b2k3 = −1 such that φ, α and β satisfy one of the
following cases.

(1) φ(b2, s) = φ(b2,−s) + 2cs, where c = φ2(b2, 0) 6= 0, and
(i) β is closed if c is a constant;
(ii) if c is not a constant, we have

rij =
σ

b2
bibj +

τ

b2
(bisj + bjsi) +

∑
k,l 6=1

rklδ
k
i δ
l
j , sij =

1

b2
(bisj − bjsi)(2)

with
∑
k 6=1 rklb

k = 0(l 6= 1), where τ := 1−kb2
kb2 . In this case, k 6= 0, and β is

closed when si = 0 for all 1 ≤ i ≤ n. Otherwise, β is not closed.
(2) φ(b2, s) 6= φ(b2,−s) + 2cs, where c = φ2(b2, 0), and one of the following

(i)-(iv) holds.
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(i) β is parallel with respect to α.
(ii) φ satisfies (32), and rij = σ(k1aij + k2bibj)(σ 6= 0). In this case, β is

closed.
(iii)

rij = σ(k1aij + k3bibj) +
1

b2
(ribj + rjbi),(3)

where ri 6= 0(i 6= 1), and φ satisfies (37)-(38), where k1 = k1(b2) if σ 6= 0. In
this case, c is a constant and β is closed.

(iv)

rij = σ(k1aij + k2bibj) +
τ

b2
(bisj + bjsi), sij =

1

b2
(bisj − bjsi),(4)

where τ := 1−kb2
kb2 and si 6= 0(i 6= 1), and φ satisfies (26), (29) and (34). In this

case, k 6= 0 (i.e., c 6= const.) and β is not closed.

The notations in Theorem 1.1, such as, Q,R,Ψ,Π, T and rij , sij , ri, si etc.
can be found in the next section. If β is parallel with respect to α, then F
is a Berwald space with same geodesics as the underlying Riemannian space
(M,α). If F = αφ(b2, s) is an (α, β)-metric, that is, φ is independent of b2, then
R(s) = Π(s) = 0 and c = φ2(0) is a constant. From this, we know that (37)
does not hold. Thus only (i) in (1) and (i)-(ii) in (2) might occur. For the case
(ii) in (2), we have k1t

2 + s2 = 0 by Ψ(s) 6= Ψ(−s), R(s) = Π(s) = 0 and (32).
This is impossible. Thus, the case (2)(ii) can not happen. Combining (1)(i)
with (2)(i) gives the following result, which was due to Masca-Sabau-Shimada.

Corollary 1.2 ([7]). Let F = αφ
(
β
α

)
be a nonreversible (α, β)-metric on an

n(≥ 3)-dimensional manifold M . Then F is with reversible geodesics if and
only if one of the following situations happens.

(1) β is parallel with respect to α.
(2) β is closed but not parallel with respect to α, and φ(s) = φ(−s) + 2cs,

where c is a nonzero constant.

It is worth mentioning that Corollary 1.2 is exactly Theorem 3.1 in [7], in
which φ satisfies φ(s) = k1φ(−s) + k2s, where k1 6= 0 and k2 are constants.
In fact, k1 = 1 by letting s = 0 in the previous equation. In particular, when
dimM ≥ 3, F = α+β is a Randers metric with reversible geodesics if and only
if β is closed ([5]).

Corollary 1.3. Let F = αφ
(
b2, s

)
, s = β/α, be a nonreversible general (α, β)-

metric on an n(≥ 3)-dimensional manifold M . Assume that β is closed. Then
F is with reversible geodesics if and only if there is a local coordinate system,
in which there are scalar functions k1(x) and σ(x), such that φ, α and β satisfy
one of the following cases.

(1) β is parallel with respect to α.
(2) φ(b2, s) = φ(b2,−s) + 2cs, where c is a nonzero constant.
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(3) φ(b2, s) = φ(b2,−s) + 2cs, where c is a nonconstant function of b and
b = ‖β‖α is a constant along the direction perpendicular to β with respect to α,

(4) φ satisfies (32) and φ(b2, s) 6= φ(b2,−s) + 2cs, and rij = k1σaij + σ
b2 (1−

k1)bibj(σ 6= 0), where c = c(b2) is a function of b2.
(5) φ satisfies (37)-(38) and φ(b2, s) 6= φ(b2,−s) + 2cs, and α, β satisfy

rij = k1σaij− σ
b2 (1+k1)bibj+

1
b2 (ribj+rjbi), where c is a constant, ri 6= 0(i 6= 1),

and k1 = k1(b2) when σ 6= 0.

The following example shows that there are many nonreversible Finsler met-
rics with reversible geodesics except for reversible Finsler metrics.

Example 1.4. Let

φ(b2, s) = s2n + a2n−2s
2n−2 + · · ·+ a2s

2 + a1s+ a0,(5)

where a0 > 0, a1 6= 0, ai = ai(b
2)(0 ≤ i ≤ 2n− 2) are smooth functions of one

variable b2 such that (8) is satisfied. For example, φ(b2, s) = s2 + a1s + kb2

satisfies (8), where k ≥ 1 is a constant and a1 = a1(b2) is a nonzero function.
Then φ defined by (5) satisfies φ(b2, s) = φ(b2,−s) + 2a1s. Moreover, for any
x, y ∈ Rn, let

α =
|y|
2|x|

, β = 2e−|x|
2

〈x, y〉,(6)

where 〈 , 〉 is an Euclidean inner product in R and | · | means the length

with respect to 〈 , 〉. Thus, bi = 2e−|x|
2

xi and b2 = 16|x|4e−2|x|2 . By a

direct calculation, we have bi|j = 1−|x|2
|x|2 e|x|

2

bibj . In this case, β is closed. By

Theorem 1.1 or Corollary 1.3, F = αφ(b2, β/α) defined by (5)-(6) is a general
(α, β)-metric with reversible geodesics.

2. Preliminaries

Let F be a Finsler metric on an n-dimensional smooth manifold M and
(x, y) = (xi, yi) the local coordinates on the tangent bundle TM . Let gy =
gij(x, y)dxi ⊗ dxj be a fundamental tensor of F , where gij = 1

2 [F 2]yiyj , and

Gi(x, y) =
1

4
gil
{

[F 2]xkyly
k − [F 2]xl

}
are called the geodesic coefficients of F , where (gij) := (gij)

−1.
Recall that a C∞ curve x : [a, b] → M is called a geodesic of the Finsler

metric F if it minimizes the Finslerian length for all piecewise C∞ curves that
keep their end points fixed ([1]). The geodesics on a Finsler manifold (M,F )
are determined by the following ODE:

ẍ+ 2Gi(x, ẋ) = 0.

Two Finsler metrics F and F̃ are said to be projectively equivalent if they
have the same positive geodesics as a point set. Equivalently, their geodesic
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coefficients Gi and G̃i are related by

Gi(x, y) = G̃i(x, y) + Pyi,(7)

where P = P (x, y) is a positive y-homogeneous function of degree one. In

particular, if F̃ is Euclidean, then F is locally projectively flat, namely, there is
a local coordinate system (U, xi) in M such that all geodesics on U are straight
lines. In this case, Gi = Pyi and P is called the projective factor of F ([4]).

General (α, β)-metrics form a more abroad class of Finsler metrics, which
can be expressed in the form

F = αφ(b2, s), s =
β

α
,

where α and β are a Riemannian metric and a 1-form on M respectively, and
φ = φ(b2, s) is a positive smooth function of two variables b2 = ‖β‖2α and s.
Then F = φ(b2, s) is a regular Finsler metric if and only if φ(b2, s) satisfies

φ− sφ2 > 0, φ− sφ2 + (b2 − s2)φ22 > 0, |s| ≤ b < b0(8)

when n ≥ 3 ([12]), where φ2 and φ22 mean the first derivative and the second
derivative of φ with respect to the second variable s. Similarly, we shall use
φ1, φ11 to denote the first and second derivatives of φ with respect to the first
variable b2, and φ12 to denote the second mixed derivative of φ. By (8), it is
easy to see that φ(b2, s) can not be an odd function in s for general (α, β)-
metrics.

Let α =
√
aij(x)yiyj and β = bi(x)yi. Denote by bi|j the coefficients of the

covariant derivative of β with respect to α, and let

rij =
1

2
(bi|j + bj|i), sij =

1

2
(bi|j − bj|i), r00 = rijy

iyj , si0 = aijsjky
k,

ri = bjrji, si = bjsji, r0 = riy
i, s0 = siy

i, ri = aijrj , s
i = aijsj , r = biri.

It is easy to see that β is closed if and only if sij = 0.
According to [12], the spray coefficients Gi of a general (α, β)-metric F =

αφ(b2, s) are related to the spray coefficients αGi of α and given by

Gi = Giα + αQsi0 +
{

Θ(−2αs0Q+ r00 + 2rα2R) + α(r0 + s0)Ω
} yi
α

+
{

Ψ(−2αs0Q+ r00 + 2rα2R) + αΠ(r0 + s0)
}
bi − α2R(ri + si),(9)

where

Q =
φ2

φ− sφ2
, R =

φ1
φ− sφ2

,

Θ =
(φ− sφ2)φ2 − sφφ22

2φ
(
φ− sφ2 + (b2 − s2)φ22

) , Ψ =
φ22

2
(
φ− sφ2 + (b2 − s2)φ22

) ,
Π =

(φ− sφ2)φ12 − sφ1φ22
(φ− sφ2)

(
φ− sφ2 + (b2 − s2)φ22

) , Ω =
2φ1
φ
− sφ+ (b2 − s2)φ2

φ
Π.
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For the sake of simplicity, let t2 := b2 − s2 and

T (b2, s) :=
φ12

φ− sφ2 + t2φ22
.

Then Π = T − 2sRΨ. Also, we shall simply use φ = φ(s), Q = Q(s), R =
R(s), Ψ(s) and Π(s) instead of φ(b2, s), Q(b2, s), R(b2, s), Ψ(b2, s), Π(b2, s)
respectively throughout the paper. Moreover, let

L0 := Q(s) +Q(−s),
L1 := − 2s0α [Q(s)Θ(s)−Q(−s)Θ(−s)] + r00 [Θ(s) + Θ(−s)]

+ 2rα2 [R(s)Θ(s) +R(−s)Θ(−s)] + α(r0 + s0) [Ω(s)− Ω(−s)] ,
L2 := − 2s0α [Q(s)Ψ(s) +Q(−s)Ψ(−s)] + r00 [Ψ(s)−Ψ(−s)]

+ 2rα2 [R(s)Ψ(s)−R(−s)Ψ(−s)] + α(r0 + s0) [Π(s) + Π(−s)] ,
L3 := α2 [R(s)−R(−s)] .

It follows from (1) and (9) that F is a Finsler metric with reversible geodesics
if and only if

αL0s
i
0 + α−1L1y

i + L2b
i − L3(ri + si) = Pyi(10)

for some homogeneous function P = P (x, y) of degree one in y.
Assume that F is with reversible geodesics. Then we have (10). Contracting

this with yi := aijy
j yields

P = α−2 [αL1 + βL2 − (r0 + s0)L3] .(11)

Plugging this into (10) gives

α3L0s
i
0 + L2(α2bi − βyi) + L3

[
(r0 + s0)yi − α2(ri + si)

]
= 0.(12)

By contracting this with bi := aijb
j , one obtains

L2 = C1L3 + C2L0,(13)

where

C1 :=
r − sα−1(r0 + s0)

t2
, C2 := −αs0

t2
.

Inserting (13) into (12) yields

L3

[
C1(βyi − α2bi)− (r0 + s0)yi + α2(ri + si)

]
(14)

= L0

[
α3si0 + C2(α2bi − βyi)

]
.

Conversely, assume that (13) and (14) hold. Then we have

L2b
i + αsi0L0 = C1L3b

i + C2L0b
i + αsi0L0

= α−2
{
C1L3βy

i − L3(r0 + s0)yi + α2L3(ri + si) + C2L0βy
i
}
.

Consequently, by (9), we get

Gi(x, y)−Gi(x,−y) = αsi0L0 + α−1L1y
i + L2b

i − L3(ri + si)
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= α−2 {C1L3β − L3(r0 + s0) + C2L0β + αL1} yi.
Consequently, there exists a homogeneous function

P = α−2 {C1L3β − L3(r0 + s0) + C2L0β + αL1}
of degree one in y such that (1) holds, which means that F is with reversible
geodesics. This proves the following:

Proposition 2.1. Let F = αφ(b2, s) be a general (α, β)-metric on a manifold
M . Then F is with reversible geodesics if and only if both (13) and (14) hold.

3. Some lemmas

In this section, we first give some lemmas to be used in the next section.

Lemma 3.1. Q(b2, s) + Q(b2,−s) = 0 if and only if φ(b2, s) is even in s. In
this case, φ2(b2, 0) = 0.

Proof. The sufficiency is obvious. Conversely, assume that Q(s) +Q(−s) = 0,
which is equivalent to

φ2(s)φ(−s) + φ(s)φ2(−s) = 0.

Consequently, there exists a function c = c(b2) only depending on b2 such that
φ(s) = c(b2)φ(−s). Letting s = 0 yields c(b2) = 1. Thus, φ(s) = φ(−s). �

It is easy to obtain the following corollary from Lemma 3.1.

Corollary 3.2. If Q(b2, s)+Q(b2,−s) = 0, then Ψ(b2, s) = Ψ(b2,−s), R(b2, s)
= R(b2,−s) and Π(b2, s) = −Π(b2,−s).

Lemma 3.3. Ψ(b2, s) − Ψ(b2,−s) = 0 if and only if φ(b2, s) = φ(b2,−s) +
2sφ2(b2, 0).

Proof. Assume that Ψ(s) = Ψ(−s), which is equivalent to

φ22(s)[φ(−s) + sφ2(−s)]− φ22(−s)(φ− sφ2)(s) = 0.

Note that d
ds [φ(s)−sφ2(s)] = −sφ22(s). The above equation implies φ−sφ2 =

c(b2)[φ(−s) + sφ2(−s)], where c(b2) is a function independent of s. Let s = 0,
we have c(b2) = 1 since φ(0) > 0. Thus, φ − φ(−s) = s(φ2 + φ2(−s)), which
means that there is a function c̄(b2) independent of s such that φ(s)−φ(−s) =
2sc̄(b2). Differentiating this with respect to s and letting s = 0 leads to c̄(b2) =
φ2(0). Thus, φ(s) = φ(−s) + 2sφ2(0). Conversely, a direct calculation gives
the conclusion. �

Corollary 3.4. If Ψ(b2, s) = Ψ(b2,−s), then

Q(b2, s) +Q(b2,−s) =
2φ2(b2, 0)

φ− sφ2
, R(b2, s)−R(b2,−s) =

2sφ12(b2, 0)

φ− sφ2
,(15)

R(b2, s)−R(b2,−s)− s[Π(b2, s) + Π(b2,−s)] =
4sb2φ12(b2, 0)

φ− sφ2
Ψ(b2, s).(16)
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Proof. Since Ψ(s) = Ψ(−s), we have φ(s) = φ(−s) + 2sφ2(0) by Lemma 3.3.
From this, we have

φ2(s) = −φ2(−s) + 2φ2(0), φ22(s) = φ22(−s),
φ1(s) = φ1(−s) + 2sφ12(0), φ12(s) = −φ12(−s) + 2φ12(0).

Thus,

φ− sφ2 = φ(−s) + 2sφ2(0)− s[−φ2(−s) + 2φ2(0)]

= φ(−s) + sφ2(−s),

and

φ− sφ2 + t2φ22 = φ(−s) + sφ2(−s) + t2φ22(−s).
From these, one obtains (15). Since

Π(s) =
φ12

φ− sφ2 + t2φ22
− 2sRΨ,

we have

Π(s) + Π(−s) =
φ12 + φ12(−s)
φ− sφ2 + t2φ22

− 2sRΨ + 2sR(−s)Ψ(−s)

=
2φ12(0)

φ− sφ2 + t2φ22
− 2sΨ[R−R(−s)].

Consequently,

R(s)−R(−s)− s[Π(s) + Π(−s)]

=
−2sφ12(0)

φ− sφ2 + t2φ22
+ (1 + 2s2Ψ)[(R−R(−s)]

=
−2sφ12(0)

φ− sφ2 + t2φ22
+
φ− sφ2 + b2φ22
φ− sφ2 + t2φ22

· 2sφ12(0)

φ− sφ2

=
2sb2φ12(0)φ22

(φ− sφ2)(φ− sφ2 + t2φ22)
=

4sb2φ12(0)

φ− sφ2
Ψ.

�

Lemma 3.5. Let R(s) = R(−s). Then

Π(s) + Π(−s) = T (s) + T (−s)− 2sR[Ψ(s)−Ψ(−s)].

Proof. It directly follows from Π(s) = T (s) − 2sR(s)Ψ(s) and R(s) = R(−s).
�

4. Proof of Theorem 1.1

4.1. Necessity

In this subsection, we try to find the necessary conditions for general (α, β)-
metrics with reversible geodesics.
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Proposition 4.1. Under the same assumptions as in Theorem 1.1, if F =
αφ(b2, s) is with reversible geodesics, then there is a local coordinate system, in

which there are scalar functions k(b2) := −φ12(b
2,0)

φ2(b2,0)
, σ(x) and ki(x)(1 ≤ i ≤ 3)

with k1 + b2k2 = 1 and k1 + b2k3 = −1, such that φ, α and β satisfy one of the
cases from (1)(i) to (2)(iv) in Theorem 1.1.

Proof. For any point p ∈M , we take an orthogonal basis on a neighbourhood
U ⊂M of p such that

α =

√√√√ n∑
i=1

(yi)2, β = by1.

Denote ᾱ =
√∑n

a=2(ya)2 and t =
√
b2 − s2 as before. Thus we have y1 = sᾱ/t.

In the following, we use the indices conventions as follows unless the otherwise
specified.

1 ≤ i, j, k, l, . . . ≤ n, 2 ≤ a, b, c, d, . . . ≤ n.
Hence we can choose the coordinate transformation: (s, ya)→ (yi) on U defined
by

y1 =
s

t
ᾱ, ya = ya.

In the new coordinates system {(s, ya)}, we have

α =
b

t
ᾱ, β =

bs

t
ᾱ.

Moreover, r1 = br11, ra = br1a, r = b2r11 and sa = bs1a. Let

r̄10 = r1ay
a, r̄00 = raby

ayb, r̄0 = ray
a,

s̄10 = s1ay
a, s̄0 = say

a, s̄i0 = yasia.

Then

r00 =
s2

t2
r11ᾱ

2 +
2s

t
r̄10ᾱ+ r̄00,

r10 =
s

t
r11ᾱ+ r̄10, r0 =

bs

t
r11ᾱ+ br̄10,

sa0 =
s

t
sa1ᾱ+ s̄a0, s10 = s̄10, s0 = s̄0.

Since F is with reversible geodesics, we have (13) and (14) by Proposition
2.1. In local coordinates {(s, ya)}, (14) becomes

[R(s)−R(−s)]{tb2ᾱ2(ri + si)− tb2(r̄0 + s̄0)yi − bᾱ[tr1ᾱ− s(r̄0 + s̄0)]bi}
= [Q(s) +Q(−s)]{sts̄0yi − bᾱs̄0bi + tsbᾱ2si1 + t2bᾱs̄i0}.(17)

Observe that (17) holds identically for i = 1. Now we consider the case when
i = a(2 ≤ a ≤ n). In this case, (17) can be rewritten as

[R(s)−R(−s)][b2ᾱ2(ra + sa)− b2(r̄0 + s̄0)ya](18)
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= [Q(s) +Q(−s)][ss̄0ya + sbᾱ2sa1 + tbᾱs̄a0].

On the other hand, from the definitions of L0, L2, L3, (13) is rewritten as

− 2s0α [Q(s)Ψ(s) +Q(−s)Ψ(−s)] + r00 [Ψ(s)−Ψ(−s)]
+ 2rα2 [R(s)Ψ(s)−R(−s)Ψ(−s)] + α(r0 + s0) [Π(s) + Π(−s)]

= C1α
2 [R(s)−R(−s)] + C2 [Q(s) +Q(−s)] .

In local coordinates {(s, ya)}, the above equation becomes

− 2bt2s̄0 [Q(s)Ψ(s) +Q(−s)Ψ(−s)] ᾱ
+ t [Ψ(s)−Ψ(−s)]

[
s2r11ᾱ

2 + 2str̄10ᾱ+ t2r̄00
]

+ 2tb4r11 [R(s)Ψ(s)−R(−s)Ψ(−s)] ᾱ2

+ t [Π(s) + Π(−s)]
[
sb2r11ᾱ

2 + bt(r̄0 + s̄0)ᾱ
]

= [R(s)−R(−s)][tr11b2ᾱ2 − bs(r̄0 + s̄0)ᾱ]− bs̄0[Q(s) +Q(−s)]ᾱ.

Note that α is irrational. The above equation can be decomposed as

− 2t2bs̄0 [Ψ(s)Q(s) + Ψ(−s)Q(−s)] + 2st2r̄10 [Ψ(s)−Ψ(−s)](19)

+ t2b(r̄0 + s̄0)[Π(s) + Π(−s)]
= − bs(r̄0 + s̄0)[R(s)−R(−s)]− bs̄0[Q(s) +Q(−s)],

and

t2 [Ψ(s)−Ψ(−s)] r̄00(20)

= − r11
{
s2[Ψ(s)−Ψ(−s)] + 2b4 [R(s)Ψ(s)−R(−s)Ψ(−s)]

+ sb2 [Π(s) + Π(−s)]− b2 [R(s)−R(−s)]
}
ᾱ2.

Next we discuss the equations (18), (19) and (20) according to the different
cases.

If Q(s) + Q(−s) = 0, then φ(b2, s) = φ(b2,−s) by Lemma 3.1. From this
and Corollary 3.2, the equations (18), (19) and (20) hold identically regardless
of the choices of α and β. In this case, F is reversible, which is excluded.

Now we consider the case when Q(s) + Q(−s) 6= 0. In this case, φ(b2, s) is
not even in s and sab = sab = 0 from (18) because of the irrationality of α.
Thus, (18) is simplified as

b2[R(s)−R(−s)][ᾱ2(ra + sa)− (r̄0 + s̄0)ya](21)

= s[Q(s) +Q(−s)](s̄0ya − saᾱ2).

Differentiating this with respect to yb, yc respectively yields

b2[R(s)−R(−s)][2δbc(ra + sa)− δac (rb + sb)− (rc + sc)δ
a
b ]

= s[Q(s) +Q(−s)][sbδac + scδ
a
b − 2δbcsa],
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which implies that

b2[R(s)−R(−s)](ra + sa) = −s[Q(s) +Q(−s)]sa(22)

by letting b = c 6= a, here we used the assumption that n ≥ 3. Hence there
exists a function k(x) such that

sa = b2k(x)(ra + sa),(23)

and

{R(s)−R(−s) + sk[Q(s) +Q(−s)]} (ra + sa) = 0.(24)

Case I. Ψ(s) = Ψ(−s).
In this case, φ(b2, s) = φ(b2,−s)+2cs by Lemma 3.3, where c = φ2(b2, 0) 6= 0

since φ(b2, s) is not even in s. Hence (20) holds identically by Corollary 3.4.
Consequently, rab are arbitrary functions. Moreover, (19) is reduced to{

b2k
[
1− 2t2Ψ(s)

]
[Q(s) +Q(−s)] + s[R(s)−R(−s)](25)

+ t2[Π(s) + Π(−s)]
}

(r̄0 + s̄0) = 0,

where we used (23). Let σ := r11(x) in the following.
If ra + sa = 0, then s1a = r1a = b1|a = 0 because of (23), which implies that

β is closed and b = ‖β‖α is a constant in the direction perpendicular to β with
respect to α. Obviously, rj = σbj and r = σb2. In this case, (24)-(25) hold
automatically.

If ra + sa 6= 0, then we get

R(s)−R(−s) = −sk[Q(s) +Q(−s)],(26)

k
[
1− 2b2Ψ(s)

]
[Q(s) +Q(−s)] + Π(s) + Π(−s) = 0(27)

from (24)-(25). Differentiating (26) with respect to s and letting s = 0 yields

k = k(b2) = −φ12(b2, 0)

φ2(b2, 0)
.

Further, when k = 0, we have φ12(b2, 0) = 0, which implies that c is a nonzero
constant. By Corollary 3.4, (26)-(27) are always satisfied. Besides this, we have
sa = 0 from (23) and hence ra 6= 0. Thus, β is closed but r1a 6= 0. When k 6= 0,
equivalently, c is not a constant, we get ra = τsa and r1a = τ

b sa from (23),

where τ(b2) := 1−kb2
kb2 . Obviously, sa 6= 0. It is easy to check that (26)-(27) are

satisfied automatically from Corollary 3.4 and the definitions of k,Ψ.
Together with the above two cases on ra+sa, we always have s11 = sab = 0,

s1a = 1
b sa, r11 = σ and r = σb2. Moreover, either sa = 0 when c is a nonzero

constant, or ra = τsa when c is not a constant. In the latter case, back to the
original coordinate system, we have

rij =
σ

b2
bibj +

τ

b2
(bisj + bjsi) +

∑
k,l 6=1

rklδ
k
i δ
l
j , sij =

1

b2
(bisj − bjsi)(28)
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with
∑
k 6=1 rklb

k = 0(l 6= 1). Consequently, one obtains the case (1)(i) or (1)(ii)
in Theorem 1.1.

Case 2. Ψ(s) 6= Ψ(−s).
In this case, φ(b2, s) 6= φ(b2,−s) + 2cs by Corollary 3.4, where c = φ2(b2, 0).

Moreover, by (20), there exists a function k1(x) such that r̄00 = k1(x)σᾱ2 and
hence rab = k1σδab. Inserting this into (20) yields

σ
{

(k1t
2 + s2)[Ψ(s)−Ψ(−s)] + 2b4[R(s)Ψ(s)−R(−s)Ψ(−s)](29)

− b2 [R(s)−R(−s)] + sb2 [Π(s) + Π(−s)]
}

= 0.

If ra + sa = 0, then sa = ra = r1a = s1a = 0 by (23), which implies that β is
closed and b = ‖β‖α is a constant along the direction perpendicular to β with
respect to α. Back to the original coordinate system, we have

rij = k1σaij +
σ

b2
(1− k1)bibj .(30)

Note that (18)-(19) hold identically. Thus φ only satisfies (29). In particular,
when σ = 0, β is parallel with respect to α regardless of the choice of φ except
Ψ(s) 6= Ψ(−s). When σ 6= 0, (α, β) satisfies (30) and φ satisfies

(k1t
2 + s2)[Ψ(s)−Ψ(−s)] + 2b4[R(s)Ψ(s)−R(−s)Ψ(−s)](31)

− b2 [R(s)−R(−s)] + sb2 [Π(s) + Π(−s)] = 0,

which is equivalent to

(k1t
2 + s2)[Ψ(s)−Ψ(−s)] + 2b2t2[R(s)Ψ(s)−R(−s)Ψ(−s)](32)

− b2 [R(s)−R(−s)] + sb2 [T (s) + T (−s)] = 0,

where we used Π = T − 2sRΨ.

If ra + sa 6= 0, then we get (26) from (24), where k = k(b2) = −φ12(b
2,0)

φ2(b2,0)
. By

(23), we have s̄0 = kb2(r̄0 + s̄0). From this, we have

r̄0 = (1− kb2)(r̄0 + s̄0).(33)

Plugging these into (19) and using (26), we get

− 2b4k[Ψ(s)Q(s) + Ψ(−s)Q(−s)] + 2s(1− kb2)[Ψ(s)−Ψ(−s)](34)

+ b2[Π(s) + Π(−s)] + kb2[Q(s) +Q(−s)] = 0.

Further, when k = 0, i.e., c is a nonzero constant, we have sa = s1a = 0 and
ra 6= 0. By (26), we have R(s) = R(−s). From (34) and (29), one obtains

2s[Ψ(s)−Ψ(−s)] + b2[Π(s) + Π(−s)] = 0,(35)

σ
{(
k1t

2 + s2 + 2b4R
)

[Ψ(s)−Ψ(−s)] + sb2[Π(s) + Π(−s)]
}

= 0,(36)

which are equivalent to

2s(1− b2R)[Ψ(s)−Ψ(−s)] + b2[T (s) + T (−s)] = 0,(37)

σ
(
k1t

2 − s2 + 2b4R
)

= 0(38)
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by Lemma 3.5. Note that (37) impliesR(s) = R(−s), and k1 = k1(b2) by letting
s = 0 in (38) when σ 6= 0. By now, we have sij = 0, r11(x) = σ(x), r1a = 1

b ra 6=
0, rab = k1σδab and r = σb2. Back to the original coordinate system, we have

rij = k1σaij −
σ

b2
(1 + k1)bibj +

1

b2
(ribj + rjbi),(39)

where ri and k1(x) are smooth functions with ri 6= 0(i 6= 1). Moreover, φ
satisfies (37) and (38), where k1 = k1(b2) when σ 6= 0.

When k 6= 0, i.e., c is not a constant, we have ra = τsa by (23), where

τ = τ(b2) := 1−kb2
kb2 . Obviously, sa 6= 0. Similarly, in the original coordinate

system, we have

rij = k1σaij +
σ(1− k1)

b2
bibj +

τ

b2
(bisj + bjsi), sij =

1

b2
(bisj − bjsi),(40)

where si 6= 0(i 6= 1). In this case, β is not closed and φ satisfies (26), (29) and
(34).

Let k2 := b−2(1 − k1) and k3 := −b−2(1 + k1). Then k1 + b2k2 = 1 and
k1 + b2k3 = −1. From the above arguments, one obtains the cases from (2)(i)
to (2)(iv) in Theorem 1.1. This finishes the proof. �

4.2. Sufficiency

In this subsection, we prove the necessary conditions in Proposition 4.1 are
also sufficient. Note that these conditions are valid in dimension two. Thus we
obtain the proof of Theorem 1.1.

Proposition 4.2. Let F = αφ(b2, s) be a general (α, β)-metrics on an n(≥ 2)-
dimensional manifold M . Suppose that φ, α and β satisfy one of the cases from
(1)(i) to (2)(iv) in Theorem 1.1. Then F is a Finsler metric with reversible
geodesics.

Proof. It suffices to check that the equation (10) holds according to each case.
Case 1. Assume that φ, α and β satisfy (1) in Theorem 1.1. Then Q(s) 6=

Q(−s) and Ψ(s) = Ψ(−s) by Lemmas 3.1-3.3. Further,
(i) by the assumption, we have s0 = si0 = 0 and φ12(b2, 0) = 0, which

implies that R(s) = R(−s) and Π(s) + Π(−s) = 0 by Corollary 3.2. Thus
L2 = L3 = 0. Consequently, (10) holds, where P = α−1L1. This means that
F is with reversible geodesics.

(ii) since c = φ2(b2, 0) is not a constant, we have φ12(b2, 0) 6= 0 and hence
k 6= 0. It follows from Corollary 3.4 that

s[Π(s) + Π(−s)] = (1− 2b2Ψ)[R(s)−R(−s)],
R(s)−R(−s) = −sk[Q(s) +Q(−s)].

Moreover, by (2), we have

rj = σbj + τsj , r = σb2, si0 =
1

b2
(s0b

i − sαsi).
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With these, one obtains

L2b
i = −

(
skσα2 + b−2s0α

)
bi[Q(s) +Q(−s)],

−L3(ri + si) =
[
skσα2bi + sb−2si

)
α2[Q(s) +Q(−s)].

Thus L2b
i − L3(ri + si) = −αL0s

i
0, which implies that (10) is true, where

P = α−1L1. So F is with reversible geodesics.
Case 2. Assume that φ, α and β satisfy (2) in Theorem 1.1. Then Q(s) 6=

Q(−s) and Ψ(s) 6= Ψ(−s) by Lemmas 3.1 and 3.3. Further,
(i) if β is parallel with respect to α, then rij = sij = 0. It is obvious that

(10) is true. So, F is with reversible geodesics.
(ii) if φ satisfies (32) and (α, β) satisfies rij = σ(k1aij +k2bibj)(σ 6= 0), then

φ satisfies (31) and

r00 =
σ

b2
(k1t

2 + s2)α2, rj = σbj , r = σb2, sij = si0 = s0 = 0.

By the definition of L2 and L3, one obtains

L2 − σL3

=
σ

b2
α2
{

(k1t
2 + s2)[Ψ(s)−Ψ(−s)] + 2b4[R(s)Ψ(s)−R(−s)Ψ(−s)]

− b2[R(s)−R(−s)] + sb2[Π(s) + Π(−s)]
}

= 0

by (31). Thus (10) holds and F is with reversible geodesics.
(iii) under the assumption of (iii), we have r00 = σ

b2 (k1t
2 − 2s2)α2 + 2s

b2 r0α,

r = σb2 and si0 = s0 = 0. Moreover, since Π = T − 2sRΨ, φ satisfies

2s[Ψ(s)−Ψ(−s)] + b2[Π(s) + Π(−s)] = 0,

R(s) = R(−s), σ(k1t
2 − s2 + 2b4R) = 0.

With these, we have L3 = 0, and

L2 =
σ

b2
(k1t

2 − s2 + 2b4R)[Ψ(s)−Ψ(−s)]α2 = 0.

Thus (10) also holds and hence F is with reversible geodesics.
(iv) if c is not a constant, then k 6= 0. Assume that (4) holds, and φ satisfies

(26), (29) and (34). Then rj = σbj + τsj , r = σb2 and

r00 =
σ

b2
(k1t

2 + s2)α2 +
2sτ

b2
s0α, si0 =

1

b2
(s0b

i − sαsi),

where s0 6= 0. From these, we have

αL0s
i
0 + L3b

i − L3(ri + si)

= − α2

kb2
[ks(Q(s) +Q(−s)) +R(s)−R(−s)] si

+
s0α

kb4

{
kb2[Q(s) +Q(−s)]− 2kb4[Q(s)Ψ(s) +Q(−s)Ψ(−s)]

+ 2s(1− kb2)[Ψ(s)−Ψ(−s)] + b2[Π(s) + Π(−s)]
}
bi
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+
σα2

b2

{
(k1t

2 + s2)[Ψ(s)−Ψ(−s)] + 2b4[R(s)Ψ(s)−R(−s)Ψ(−s)]

+ sb2[Π(s) + Π(−s)]− b2[R(s)−R(−s)]
}
bi = 0.

Consequently, (10) holds and F is with reversible geodesics. This ends the
proof. �

Proof of Theorem 1.1. It directly follows from Propositions 4.1-4.2. �
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