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CHARACTERIZING COMPLEX LOCALLY

MINKOWSKI SPACES BY

HOLOMORPHIC SECTIONAL CURVATURE

Xinxiang Chen and Rongmu Yan

Abstract. In this paper, we prove that a complex Finsler manifold is
a complex locally Minkowski space if and only if it is a strictly Kähler-
Berwald manifold with zero holomorphic sectional curvature.

1. Introduction

Recently, more and more people have been attracted to the study of Finsler
geometry. The study of Finsler spaces has many applications in physics and
biology. In complex Finsler geometry, people think the notion of Kähler-Finsler
metrics is the extension of the Kähler metrics. Actually, the Kähler-Berwald
metrics may be the closest non-Hermitian complex Finsler metrics to the Kähler
metrics. Therefore, to explore the properties of the Kähler-Finsler metrics and
the Kähler-Berwald metrics is one of the most important tasks in complex
Finsler geometry.

Here we will describe the characterization of the Kähler-Berwald manifolds
with zero holomorphic sectional curvature.

Main Theorem. Let F be a complex Finsler metric on a complex manifold
M . Then it is a complex locally Minkowski metric if and only if it is a strictly
Kähler-Berwald metric with vanishing holomorphic sectional curvature.

A complex Finsler metric is a strictly Kähler-Finsler metric in the sense that
it is a Kähler-Finsler metric satisfying the following condition on the torsion of
the induced Chern-Finsler connection by F :

(1) ⟨∂̄Hθ(H,χ, K̄), χ⟩ = 0 for all H,K ∈ H,
where H refer to the (1, 0)-part of complex horizontal bundle. M. Abate and
G. Patrizio [1] have ever used this condition to discuss those complex Finsler
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metrics with nonpositive constant holomorphic sectional curvature. Notice that
it is different from the definition of a strongly Kähler-Finsler metric.

A special case of the main theorem has been proved by the second author
[13, 14] with a stronger assumption.

Here we refer to [1] and [13] for all other definitions and notations.

2. Proof of the main theorem

From now on, we assume F is a strictly Kähler-Berwald metric on a complex
manifold M with zero holomorphic sectional curvature. Using the coefficients
Γα
β;γ , we define the complex Berwald connection:

DV = (
∂V α

∂zγ
+ V βΓα

β;γ)
∂

∂zα
⊗ dzγ

for a holomorphic vector field V = V α ∂
∂zα . Obviously, D is a linear connection

since F is complex Berwaldian.
The curvature forms of D are

Ωβ
α = dωβ

α − ωγ
α ∧ ωβ

γ ,

where ωβ
α = Γβ

γ;αdz
γ .

Under local coordinate system, we can write

(2) Ωβ
α =

1

2
Kβ

αγδ̄
dzγ ∧ dz̄δ,

where Kβ

αγδ̄
= −2

∂Γβ
α;γ

∂z̄δ , since [ δ
δzµ ,

δ
δzν ] = 0.

We know from [1, 3, 12] that the holomorphic sectional curvature of (M,F )
is

K(X) = −
Gαβ̄K

α
σγδ̄

yσ ȳβyγ ȳδ

2G2(y)
,

where X ∈ TpM,p ∈M , and X = y+ ȳ, y ∈ T 1,0
p M,y = yα ∂

∂zα . It is clear that
the holomorphic sectional curvature of D is equal to that of F .

Since (M,F ) is a Kähler-Berwald manifold, Γα
β;µ, and K

β

αγδ̄
is independent

on y.
Let ∇ be the Chern-Finsler connection associated to F . In local coordinates,

the curvature operator of ∇ is given by

Ωα
β = Rα

β;µν̄dz
µ ∧ dz̄ν +Rα

βδ;ν̄ψ
δ ∧ dz̄ν +Rα

βγ̄;µdz
µ ∧ ψ̄γ +Rα

βδγ̄ψ
δ ∧ ψ̄γ ,

where

Rα
β;µν̄ = −δν̄(Γα

β;µ)− Γα
βσδν̄(Γ

σ
;µ),

Rα
βδ;ν̄ = −δν̄(Γα

βδ),

Rα
β;γ̄µ = −∂̇γ(Γα

β;µ)− Γα
βσΓ

σ
γ̄;µ,

Rα
βδγ̄ = −∂̇γ(Γα

βδ).

The notations here are similar to [1].
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Since (M,F ) is with zero holomorphic sectional curvature, then

(3) Gαβ̄K
α
σγδ̄y

σ ȳβyγ ȳδ = 0.

Denote Kβσ̄µν̄ = Gασ̄K
α
βµν̄ , Rβσ̄;µν̄ = Gασ̄R

α
β;µν̄ , then

Rβσ̄;µν̄ =
1

2
Kβσ̄µν̄ −Gασ̄Γ

α
βδδν̄(Γ

δ
;µ),

and

(4) Rβσ̄;µν̄y
β =

1

2
Kβσ̄µν̄y

β .

By Lemma 3.1.6 in [1], condition (1) is equivalent to

⟨Ω(H, K̄)χ, χ⟩ = ⟨Ω(χ, K̄)H,χ⟩ for all H,K ∈ H.

Under local coordinates, it is

Rβσ̄;µν̄y
β ȳν = Rµσ̄;βν̄y

β ȳν .

Furthermore, by (1.4) in [3],

Rβσ̄;µν̄ = Rσβ̄;νµ̄.

Notice that Kβσ̄µν̄ = Kµσ̄βν̄ , so we have

(5) Kβσ̄µν̄y
βyµȳν = Kβν̄µσ̄y

βyµȳν .

Differentiating on ȳ for both sides of (3), it turns into

Kσβ̄γδ̄y
σyγ ȳδ = 0,

where we have used (5). It turns into

Kα
σγδ̄y

σyγ ȳδ = 0.

Differentiating again on ȳ and y, we can have

Kα
σγδ̄ = 0.

For any fixed point p ∈ M , let (zi) be any local holomorphic coordinate
system on some open set U with zi(p) = 0. For any holomorphic vector X(p) ∈
T 1,0
p M , we want to extend it to a covariantly constant holomorphic vector field

X (that is, DX = 0) on U . Let γ(z1) := (z1, 0, . . . , 0) be the z1-coordinate
complex surface that passes through p, z1 = x1 + iy1. Since D is linear, we
can parallel translate X(p) along the real axis. At each point along the real
axis, we now have a holomorphic vector. Parallel translate this vector along
the direction parallel to the imaginary axis, we have thus extended X(p) to a
holomorphic vector field X(z1, 0, . . . , 0) on the z1-coordinate complex surface
Σ1 := {z | z = (z1, 0, 0, . . . , 0) ∈ U} that passes through p.

Since the holomorphic sectional curvature of D vanishes, we have

D ∂
∂x1

D ∂
∂y1

X −D ∂
∂y1

D ∂
∂x1

X = 0 on Σ1.
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But by construction, D ∂
∂y1

X = 0 on Σ1. So D ∂
∂x1

X is parallel along the

imaginary coordinate curve, and it vanishes at the points on the real coordinate
curve. Thus it must be identically zero along the z1-coordinate complex surface.
Hence D ∂

∂z1
X = 0 on Σ1.

By following the similar step as above, we can extend X onto Σ2 := {z | z =
(z1, z2, 0, . . . , 0) ∈ U}. Obviously,

(6) D ∂
∂z2

X = 0 on Σ2.

We would show that D ∂
∂z1

X = 0 is also true on Σ2.

We digress to construct a linear connection on M as a real manifold. Let
{z1, . . . , zn} be a set of local coordinates, with zα = xα + ixn+α, so that
{x1, . . . , xn, xn+1, . . . , x2n} are local real coordinates. We use the same conven-
tion as [13]: Lowercase greek indices will run from 1 to n, whereas lowercase
roman indices will run from 1 to 2n.

We write ωβ
α = θβα +

√
−1θn+β

α , and let θn+β
n+α = θβα, θ

β
n+α = −θn+β

α . These

{θba} can be used as a connection form on M , i.e., we define

D̂
∂

∂xa
= θba

∂

∂xb
.

If we write θba = Γ̂b
cadx

c, the relation of Γβ
γ;α and Γ̂b

ca is just the (5) and (6)
in [13]. It is easily known that D can be looked as the complexified linear

extension of D̂.
The curvature form of D̂ is

Θb
a = dθba − θca ∧ θbc.

Obviously,

Ωβ
α = Θβ

α +
√
−1Θn+β

α

and

Θn+β
n+α = Θβ

α Θβ
n+α = −Θn+β

α .

If we denote the curvature tensors of D and D̂ by R and R̂ respectively, then
R is also the complexified linear extension of R̂.

Now we return to our proof.
Since D is with vanishing holomorphic sectional curvature, then Ωβ

α = 0 and

Θb
a = 0 by the above discussion. Hence both the curvature tensor R̂ and R

vanish. Now we have

D ∂
∂z1

D ∂
∂z2

X −D ∂
∂z2

D ∂
∂z1

X = 0 on Σ2.

By this formula and (6), D ∂
∂z1

X is parallel along the z2-coordinate and it

vanishes at the points on the Σ1 := {(z1, 0, . . . , 0) ∈ U}. Hence D ∂
∂z1

X = 0 on

Σ2.
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This process of extension can be continued until one obtains a holomorphic
vector field X on U satisfying D ∂

∂zα
X = 0 for all α. And this last property is

equivalent to DYX = 0 for all holomorphic vector fields Y .
Now we take any basis {Xα(p)} of T 1,0

p M and, through the above proce-
dure, extend it to a collection of covariantly constant holomorphic vector fields
{Xα} on U . These holomorphic vector fields form a basis at every holomor-
phic tangent space in U . Also, since a Kähler-Finsler metric must be strongly
Kähler-Finslerian for a complex Berwald metric and the torsion must vanish
for a strongly Kähler-Finsler metric, it implies that [Xα, Xβ ] = 0. So one can

construct local coordinates (zα) on U such that Xα = ∂
∂zα . The statement

DXγXα = 0 then implies that Γβ
γ;α = 0. So under this coordinate, it gives

∂Gαβ̄

∂zγ = 0. And (M,F ) is a complex locally Minkowski space.
Conversely, suppose (M,F ) is a complex locally Minkowski space. Obviously

Γβ
;α vanishes in some privileged coordinate charts and so Γβ

γ;α. This means
(M,F ) is a strictly Kähler-Berwald space with vanishing holomorphic sectional
curvature. And we finish our proof of the main theorem.

3. Two examples of complex locally Minkowski spaces

Example 1. LetM be a complex manifold with an Hermitian metric α, and β
be a (1, 0)-form onM . If a function F (α, β) satisfies the conditions in Definition
2.3.1 and Definition 2.3.5 in [1] as a function from T 1,0M to R+, then F (α, β)
is called a complex (α, β)-metric on M .

We know from [2] that if the (1, 0)-form β is holomorphic and parallel with
respect to the Hermite connection induced by α, then (M,F (α, β)) is a complex
Berwald manifold. If we further assume α is a Kähler metric, then (M,F (α, β))
is a Kähler-Finsler manifold. Under these conditions, if α is also with vanishing
holomorphic sectional curvature, then Γα

β;γ = 0. Hence (M,F (α, β) is a strictly
Kähler-Berwald manifold with zero holomorphic sectional curvature, and it is
a complex locally Minkowski space by the main theorem.

Example 2. Let (M1, α), (M2, β) be Hermitian manifolds. Fε(ε > 0) is the
complex Szabó metric on the product manifold M1 ×M2 defined by

Fε :=

√
α(y1)2 + β(y2)2 + ε(α(y1)2k + β(y2)2k)

1
k ,

where y = y1 ⊕ y2 = (v1, . . . , vm, vm+1, . . . , vm+n) ∈ T 1,0
z (M1 × M2), z =

(z1, z2) ∈ M1 × M2, y1 = (v1, . . . , vm) ∈ T 1,0
z1 M1, y2 = (vm+1, . . . , vm+n) ∈

T 1,0
z2 M2, and k > 1 is a positive integer.
We have known in [5] that Fε is a strongly pseudoconvex complex Finsler

metric. Furthermore, Fε is strongly Kähler-Finslerian if α and β are both
Kähler metrics. In fact, the coefficients of Chern-Finsler connection can be
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written as follows:

N i
j(y) =


∑m

l=1 a
l̄ivl̄;j 1 ≤ i, j ≤ m∑m+n

l=m+1 b
l̄ivl̄;j m+ 1 ≤ i, j ≤ m+ n

0 otherwise.

For X = (X1, X2) = y+ ȳ ∈ Tz(M1×M2), by a direct computation, we have

K(z,X)

=
1

G2
(Aaαδ̄Γ

α
γ;µν̄v

γ v̄δvµv̄ν+Bbα+mδ+mΓα+m
γ+m;µ+mν+m

vγ+mv̄δ+m)vµ+mv̄ν+m

=
1

G2
(AKα(z1, X1) +BKβ(z2, X2)),

whereG= F 2
ε , A= 1+ε(α2k+β2k))

1
k−1α2(k−1), B= 1+ε(α2k+β2k)

1
k−1β2(k−1).

Now we can easily know that (M1 ×M2, Fε) is a complex locally Minkowski
space if both (M1, α) and (M2, β) have vanishing holomorphic sectional curva-
tures.
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