• Title/Summary/Keyword: Finite field GF(2$^{m}$ )

Search Result 95, Processing Time 0.035 seconds

High Performance Elliptic Curve Cryptographic Processor for $GF(2^m)$ ($GF(2^m)$의 고속 타원곡선 암호 프로세서)

  • Kim, Chang-Hoon;Kim, Tae-Ho;Hong, Chun-Pyo
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.3
    • /
    • pp.113-123
    • /
    • 2007
  • This paper presents a high-performance elliptic curve cryptographic processor over $GF(2^m)$. The proposed design adopts Lopez-Dahab Montgomery algorithm for elliptic curve point multiplication and uses Gaussian normal basis for $GF(2^m)$ field arithmetic operations. We select m=163 which is the smallest value among five recommended $GF(2^m)$ field sizes by NIST and it is Gaussian normal basis of type 4. The proposed elliptic curve cryptographic processor consists of host interface, data memory, instruction memory, and control. We implement the proposed design using Xilinx XCV2000E FPGA device. Based on the FPGA implementation results, we can see that our design is 2.6 times faster and requires significantly less hardware resources compared with the previously proposed best hardware implementation.

A Fast Diverse Calculation Method over Finite Field GF($2^m$) (유한체 GF($2^m$)상에서의 빠른 역원계산 기법)

  • 박정식;안금혁;김영길;장청룡
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 1996.11a
    • /
    • pp.145-150
    • /
    • 1996
  • 정보보호기법을 적용한 다양한 서비스의 구현에 있어서는 적용기법에서 채택한 암호학적 연산에 의해 그 실용성이 종속하게 되며 이러한 실용화를 위한 하드웨어 또는 소프트웨어적 구현기법에 관한 많은 연구가 진행되고 있다. 본 논문에서는 유한체 GF(2$^{m}$ )상에서의 역원계산을 효율적이며 신속하게 처리할 수 있는 방법에 관해서 다루고 있다. 본 논문에서 제안하는 방법은 정규기저를 이용하여 임의의 유한체위에 적용 가능하도록 설계된 기법이다. 본 논문에서의 제안 방법은 이미 알려진 Itoh의 방법보다 대부분의 정수에 대하여 효율적임을 보인다.

  • PDF

Implementation of a LSB-First Digit-Serial Multiplier for Finite Fields GF(2m) (유한 필드 GF(2m)상에서의 LSB 우선 디지트 시리얼 곱셈기 구현)

  • Kim, Chang-Hun;Hong, Chun-Pyo;U, Jong-Jeong
    • The KIPS Transactions:PartA
    • /
    • v.9A no.3
    • /
    • pp.281-286
    • /
    • 2002
  • In this paper we, implement LSB-first digit-serial systolic multiplier for computing modular multiplication $A({\times})B$mod G ({\times})in finite fields GF $(2^m)$. If input data come in continuously, the implemented multiplier can produce multiplication results at a rate of one every [m/L] clock cycles, where L is the selected digit size. The analysis results show that the proposed architecture leads to a reduction of computational delay time and it has more simple structure than existing digit-serial systolic multiplier. Furthermore, since the propose architecture has the features of regularity, modularity, and unidirectional data flow, it shows good extension characteristics with respect to m and L.

A New Multiplication Algorithm and VLSI Architecture Over $GF(2^m)$ Using Gaussian Normal Basis (가우시안 정규기저를 이용한 $GF(2^m)$상의 새로운 곱셈 알고리즘 및 VLSI 구조)

  • Kwon, Soon-Hak;Kim, Hie-Cheol;Hong, Chun-Pyo;Kim, Chang-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12C
    • /
    • pp.1297-1308
    • /
    • 2006
  • Multiplications in finite fields are one of the most important arithmetic operations for implementations of elliptic curve cryptographic systems. In this paper, we propose a new multiplication algorithm and VLSI architecture over $GF(2^m)$ using Gaussian normal basis. The proposed algorithm is designed by using a symmetric property of normal elements multiplication and transforming coefficients of normal elements. The proposed multiplication algorithm is applicable to all the five recommended fields $GF(2^m)$ for elliptic curve cryptosystems by NIST and IEEE 1363, where $m\in${163, 233, 283, 409, 571}. A new VLSI architecture based on the proposed multiplication algorithm is faster or requires less hardware resources compared with previously proposed normal basis multipliers over $GF(2^m)$. In addition, we gives an easy method finding a basic multiplication matrix of normal elements.

Low System Complexity Bit-Parallel Architecture for Computing $AB^2+C$ in a Class of Finite Fields $GF(2^m)$ (시스템 복잡도를 개선한 $GF(2^m)$ 상의 병렬 $AB^2+C$ 연산기 설계)

  • 변기령;김흥수
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.6
    • /
    • pp.24-30
    • /
    • 2003
  • This study focuses on the arithmetical methodology and hardware implementation of low system-complexity A $B^2$+C operator over GF(2$^{m}$ ) using the irreducible AOP of degree m. The proposed parallel-in parallel-out operator is composed of CS, PP, and MS modules, each can be established using the array structure of AND and XOR gates. The proposed multiplier is composed of (m+1)$^2$ 2-input AND gates and (m+1)(m+2) 2-input XOR gates. And the minimum propagation delay is $T_{A}$ +(1+$\ulcorner$lo $g_2$$^{m}$ $\lrcorner$) $T_{x}$ . Comparison result of the related A $B^2$+C operators of GF(2$^{m}$ ) are shown by table, It reveals that our operator involve more lower circuit complexity and shorter propagation delay then the others. Moreover, the interconnections of the out operators is very simple, regular, and therefore well-suited for VLSI implementation.

A New Parallel Multiplier for Type II Optimal Normal Basis (타입 II 최적 정규기저를 갖는 유한체의 새로운 병렬곱셈 연산기)

  • Kim Chang-Han;Jang Sang-Woon;Lim Jong-In;Ji Sung-Yeon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.4
    • /
    • pp.83-89
    • /
    • 2006
  • In H/W implementation for the finite field, the use of normal basis has several advantages, especially, the optimal normal basis is the most efficient to H/W implementation in GF($2^m$). In this paper, we propose a new, simpler, parallel multiplier over GF($2^m$) having a type II optimal normal basis, which performs multiplication over GF($2^m$) in the extension field GF($2^{2m}$). The time and area complexity of the proposed multiplier is same as the best of known type II optimal normal basis parallel multiplier.

A Study on the Construction of Parallel Multiplier over GF2m) (GF(2m) 상에서의 병렬 승산기 설계에 관한 연구)

  • Han, Sung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.3
    • /
    • pp.1-10
    • /
    • 2012
  • A low-complexity Multiplication over GF(2m) and multiplier circuit has been proposed by using cyclic-shift coefficients and the irreducible trinomial. The proposed circuit has the parallel input/output architecture and shows the lower-complexity than others with the characteristics of the cyclic-shift coefficients and the irreducible trinomial modular computation. The proposed multiplier is composed of $2m^2$ 2-input AND gates and m (m+2) 2-input XOR gates without the memories and switches. And the minimum propagation delay is $T_A+(2+{\lceil}log_2m{\rceil})T_X$. The Proposed circuit architecture is well suited to VLSI implementation because it is simple, regular and modular.

New Multiplier using Montgomery Algorithm over Finite Fields (유한필드상에서 몽고메리 알고리즘을 이용한 곱셈기 설계)

  • 하경주;이창순
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2002.06a
    • /
    • pp.190-194
    • /
    • 2002
  • Multiplication in Galois Field GF(2/sup m/) is a primary operation for many applications, particularly for public key cryptography such as Diffie-Hellman key exchange, ElGamal. The current paper presents a new architecture that can process Montgomery multiplication over GF(2/sup m/) in m clock cycles based on cellular automata. It is possible to implement the modular exponentiation, division, inversion /sup 1)/architecture, etc. efficiently based on the Montgomery multiplication proposed in this paper. Since cellular automata architecture is simple, regular, modular and cascadable, it can be utilized efficiently for the implementation of VLSI.

  • PDF

Design of High-Speed Parallel Multiplier over Finite Field $GF(2^m)$ (유한체 $GF(2^m)$상의 고속 병렬 승산기의 설계)

  • Seong Hyeon-Kyeong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.5 s.311
    • /
    • pp.36-43
    • /
    • 2006
  • In this paper we present a new high-speed parallel multiplier for Performing the bit-parallel multiplication of two polynomials in the finite fields $GF(2^m)$. Prior to construct the multiplier circuits, we consist of the MOD operation part to generate the result of bit-parallel multiplication with one coefficient of a multiplicative polynomial after performing the parallel multiplication of a multiplicand polynomial with a irreducible polynomial. The basic cells of MOD operation part have two AND gates and two XOR gates. Using these MOD operation parts, we can obtain the multiplication results performing the bit-parallel multiplication of two polynomials. Extending this process, we show the design of the generalized circuits for degree m and a simple example of constructing the multiplier circuit over finite fields $GF(2^4)$. Also, the presented multiplier is simulated by PSpice. The multiplier presented in this paper use the MOD operation parts with the basic cells repeatedly, and is easy to extend the multiplication of two polynomials in the finite fields with very large degree m, and is suitable to VLSI. Also, since this circuit has a low propagation delay time generated by the gates during operating process because of not use the memory elements in the inside of multiplier circuit, this multiplier circuit realizes a high-speed operation.

A Study on the Hardware Architecture of Trinomial $GF(2^m)$ Multiplier (Trinomial $GF(2^m)$ 승산기의 하드웨어 구성에 관한 연구)

  • 변기영;윤광섭
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.5
    • /
    • pp.29-36
    • /
    • 2004
  • This study focuses on the arithmetical methodology and hardware implementation of low-system-complexity multiplier over GF(2$^{m}$ ) using the trinomial of degree a The proposed parallel-in parallel-out operator is composed of MR, PP, and MS modules, each can be established using the regular array structure of AND and XOR gates. The proposed multiplier is composed of $m^2$ 2-input AND gates and $m^2$-1 2-input XOR gates, and the propagation delay is $T_{A}$+(1+[lo $g_2$$^{m}$ ]) $T_{x}$ . Comparison result of the related multipliers of GF(2$^{m}$ ) are shown by table, it reveals that our operator involve more regular and generalized then the others, and therefore well-suited for VLSI implementation. Moreover, our multiplier is more suitable for any other GF(2$^{m}$ ) operational applications.s.