Browse > Article

Design of High-Speed Parallel Multiplier over Finite Field $GF(2^m)$  

Seong Hyeon-Kyeong (School of Computer, Information and Communication Engineering, Sangji University)
Publication Information
Abstract
In this paper we present a new high-speed parallel multiplier for Performing the bit-parallel multiplication of two polynomials in the finite fields $GF(2^m)$. Prior to construct the multiplier circuits, we consist of the MOD operation part to generate the result of bit-parallel multiplication with one coefficient of a multiplicative polynomial after performing the parallel multiplication of a multiplicand polynomial with a irreducible polynomial. The basic cells of MOD operation part have two AND gates and two XOR gates. Using these MOD operation parts, we can obtain the multiplication results performing the bit-parallel multiplication of two polynomials. Extending this process, we show the design of the generalized circuits for degree m and a simple example of constructing the multiplier circuit over finite fields $GF(2^4)$. Also, the presented multiplier is simulated by PSpice. The multiplier presented in this paper use the MOD operation parts with the basic cells repeatedly, and is easy to extend the multiplication of two polynomials in the finite fields with very large degree m, and is suitable to VLSI. Also, since this circuit has a low propagation delay time generated by the gates during operating process because of not use the memory elements in the inside of multiplier circuit, this multiplier circuit realizes a high-speed operation.
Keywords
Finite fields $GF(2^m)$; Parallel multiplier; Systolic multiplier; Irreducible polynomial; Reed-Solomon decoder;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. H. Kim, S. Oh and J. Lim, 'A New Hardware Architecture for Operation in $GF(2^m)$ ,' IEEE Trans. Computers, vol. 51, no. 1, pp. 90-92, Jan. 2002   DOI   ScienceOn
2 C. Lee, J. Horng, I. Jou and E. Lu, 'Low-Complexity Bit-Parallel Systolic Montgomery Multipliers for Special Classes of $GF(2^m)$ ,' IEEE Trans. Computer, vol. 54, no. 9, pp.1061-1070, Sep. 2005   DOI   ScienceOn
3 R. Lidl, H. Niederreiter and P. M. Cohn, Finite Fields, Addison-Wesley, Reading, Massachusetts, 1983
4 S. B. Wicker and V. K. Bhargava, Error Correcting Coding Theory, McGraw-Hill, New York, 1989
5 A. R. Masoleh and M. A. Hasan, 'A New Construction of Massey-Omura Parallel Multiplier over $GF(2^m)$ ,' IEEE Trans. ?Computers, vol. 51, no. 5, pp. 511-520, May 2002   DOI   ScienceOn
6 H. Wu, 'Bit-Parallel Finite Field Multiplier and Squarer Using Polynomial Basis,' IEEE Trans. Computers, vol. 51, no. 7, pp.750-758, July 2002   DOI   ScienceOn
7 C. L. Wang and J. H. Guo, 'New Systolic Arrays for C+AB2, Inversion, and Division in $GF(2^m)$ ,' IEEE Trans. Computers, vol. 49, no. 10, pp. 1120-1125, Oct. 2000   DOI   ScienceOn
8 H. Fan and Y. Dai, 'Fast Bit-Parallel $GF(2^m)$ Multiplier for All Trinomials,' IEEE Trans. Computer, vol. 54, no. 4, pp.485-490, Apr., 2005   DOI   ScienceOn
9 J. J. Wonziak, 'Systolic Dual Basis Serial Multiplier,' IEE Proceeding Computers and Digital Technology, vol. 145, no. 3, pp.237-241, July 1998   DOI   ScienceOn
10 A. K. Daneshbeh, and M. A. Hasan, 'A Class of Unidirectional Bit Serial Systolic Architectures for Multiplicative Inversion and Division over $GF(2^m)$,' IEEE Trans. Computer, vol. 54, no. 3, pp.370- 380, Mar. 2005   DOI   ScienceOn
11 C. S. Yeh, I. S. Reed and T. K. Truong, 'Systolic Multipliers for Finite Field $GF(2^m)$ ,' IEEE Trans. Computers, vol. C-33, pp. 357-360, Apr. 1984   DOI   ScienceOn
12 H. Wu and H. A. Hasan and L. F. Blake, 'New Low-Complexity Bit-Parallel Finite Fields Multipliers Using Weekly Dual Basis,' IEEE Trans. Computers, vol. 47, no. 11, pp. 1223-1234, Nov. 1998   DOI   ScienceOn
13 G. Drolet, 'A New Representation of Finite Fields $GF(2^m)$ Yielding Small Complexity Arithmetic,' IEEE Trans. Computers, vol. 47, no. 9, pp. 938-946, Sept. 1998   DOI   ScienceOn
14 A. Halbutogullari and C. K. Koc, 'Mastrovito Multiplier for General Irreducible Polynomials,' IEEE Trans. Computers, vol. 49, no. 5, pp, 503-518, May 2000   DOI   ScienceOn
15 Kiamal Z. Pekrnestzi, 'Multiplexer-Based Array Multiplier,' IEEE Trans. Computer, vol. 48, No.1, pp.15-23, Jan. 1999   DOI   ScienceOn
16 H. M. Shao, T. K. Truong, L. J. Deutsch, J. H. Yaeh and I. S. Reed, 'A VLSI Design of a Pipelining Reed-Solomon Decoder,' IEEE Trans. Computers, vol. C-34, pp. 393-403, May 1985   DOI   ScienceOn
17 C. Y. Lee, E. H. Lu and J. Y. Lee, 'Bit Parallel Systolic Multipliers for $GF(2^m)$ Fields Defined by All-One and Equally Spaced Polynomials,' IEEE Trans. Computers, vol. 50, no. 5, pp. 385-392, May 2001   DOI   ScienceOn
18 S. W. Wei, 'A Systolic Power-Sum Circuit for $GF(2^m)$ ,' IEEE Trans. Computers, vol. 43, no. 2, pp.226-229, Feb. 1994   DOI   ScienceOn
19 E. D. Mastrovito, 'VLSI Design for Multiplication on Finite Field $GF(2^m)$ ,' Proc. International Conference on Applied Algebraic Algorithms and Error-Correcting Code, AAECC-6, Roma, pp. 297-309, July 1998
20 C. C. Wang, T. K. Truong, H. M. Shao, L. J. Deutsch, J. K. Omura and I. S. Reed, 'VLSI Architecture for Computing Multiplications and Inverses in $GF(2^m)$,' IEEE Trans. Computers, vol. C-34, pp. 709-717, Aug. 1985   DOI   ScienceOn
21 P. A. Scott, S. E. Tarvares and L. E. Peppard, 'A Fast Multiplier for $GF(2^m)$,' IEEE J. Select. Areas Communications, vol. SAC-4, no. 1, pp. 707-717, Jan. 1986
22 I. S. Hsu, T. K. Truong, L. J. Deutsch and I. S. Reed, 'A Comparison of VLSI Architecture of Finite Field Multipliers Using Dual, Normal, or Standard Bases,' IEEE Trans. Computers, vol. C-37, no. 6, pp. 735-739, Jun. 1988   DOI   ScienceOn
23 C. L. Wang and J. L. Lin, 'Systolic Array Implementation of Multipliers for Finite Fields $GF(2^m)$,' IEEE Trans. Circuits and Systems, vol. 38, no. 7, July 1991
24 B. A. Laws and C. K. Rushforth, 'A Cellular Array Multiplier for $GF(2^m)$ ,' IEEE Trans. Computers, vol. C-20, pp. 1573-1578, Dec. 1971   DOI   ScienceOn
25 C. K. Koc and B. Sunar, 'Low Complexity Bit-Parallel Canonical and Normal Basis Multipliers for a Class of Finite Fields,' IEEE Trans. Computers, vol. 47, no. 3, pp. 353-356, Mar. 1998   DOI   ScienceOn
26 Kiamal Z. Pelanestzi, 'Multiplexer-Based Array Multipliers,' IEEE Trans. Computers, vol. 48, no.1, pp. 15-23, Jan. 1999   DOI   ScienceOn
27 H. Wu and M. A. Hasan, 'Low Complexity Bit-Parallel Multipliers for a Class of Finite Fields,' IEEE Trans. Computers, vol. 47, no. 8, pp. 883-887, Nov. 1998   DOI   ScienceOn