Browse > Article

High Performance Elliptic Curve Cryptographic Processor for $GF(2^m)$  

Kim, Chang-Hoon (대구대학교 정보통신공학과)
Kim, Tae-Ho (대구대학교 정보통신공학과)
Hong, Chun-Pyo (대구대학교 정보통신공학과)
Abstract
This paper presents a high-performance elliptic curve cryptographic processor over $GF(2^m)$. The proposed design adopts Lopez-Dahab Montgomery algorithm for elliptic curve point multiplication and uses Gaussian normal basis for $GF(2^m)$ field arithmetic operations. We select m=163 which is the smallest value among five recommended $GF(2^m)$ field sizes by NIST and it is Gaussian normal basis of type 4. The proposed elliptic curve cryptographic processor consists of host interface, data memory, instruction memory, and control. We implement the proposed design using Xilinx XCV2000E FPGA device. Based on the FPGA implementation results, we can see that our design is 2.6 times faster and requires significantly less hardware resources compared with the previously proposed best hardware implementation.
Keywords
Elliptic Curve Cryptosystem; Cryptographic Processor; Finite Field; Gaussian Normal Basis; VLSI;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Reyhani-Masoleh and M.A. Hasan, 'Efficient Digit-Serial Normal Basis Multipliers over GF(2m),' ACM Trans. Embedded Computing Systems(TECS), special issue on embedded systems and security, vol. 3, no. 3, pp. 575-592, Aug. 2004   DOI
2 T. Itoh and S. Tsuji, 'A fast algorithm for computing multiplicative inverses $GF(2^m)$in using normal bases,' Information and Computing, vol.78, no. 3, pp. 171-177, 1988   DOI
3 D. Hankerson, A. Menezes, and S. Vanstone, Guide to Eliptic Curve Cryptography, Springer 2004
4 L. Gao, S. Shrivastava, and G. Sobelman, 'Elliptic Curve Scalar Multiplier Design Using FPGAs,' Proc. Cryptographic Hardware and Embedded Systems (CHES '99), pp. 257-268, Aug. 1999.
5 G. Orlando and C. Parr, 'A High Performance Reconfigurable Elliptic Curve Processor for GF (2m),' CHES 2000, LNCS 1965, 2000.
6 G. B. Agnew, R. C. Mullin, and S. A. Vanstone, 'An implementation of elliptic curve cryptosystems over F $_2^{155}$,' IEEE Journal on Selected Areas in Communications, Vol. 11, no. 5, pp. 804-813, June 1993   DOI   ScienceOn
7 IEEE 1363, Standard Specifications for Publickey Cryptography, 2000
8 NIST, Recommended elliptic curves for federal government use, May 1999. http://csrc.nist.gov/encryption
9 V.S. Miller, 'Use of Elliptic Curves in Cryptography,' in Advances in Cryptology-Proc. of CRYPTO'85, pp. 417-426, 1986
10 N. Koblitz, 'Elliptic Curve Cryptosystems,' Mathematics of Computation, vol. 48, pp. 203-209, 1987   DOI
11 RSA Laboratories, Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1, RFC 3447, 2003
12 T. ElGamal, 'A Publick Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms,' in Advances in Cryptology-Proc. of CRYPTO'84, pp. 10-18, 1985
13 I.F. Blake, G. Seroussi, and N.P. Smart, Elliptic Curves in Cryptography, Cambridge University Press, 1999
14 M. Rosing, Implementing Elliptic Curve Cryptography, Manning, 1999
15 M.C. Rosner, 'Elliptic Curve Cryptosystems on Reconfigurable Hardware,' master's thesis, Worcester Polytechnic Inst., May 1998, http://www.ece.wpi.edu/research/cry-pt/publications/documents/ms_mrosner.pdf
16 N.P. Smart, 'The Hessian Form of an Elliptic Curve,' Proc. Cryptographic Hardware and Embedded Systems(CHES 2001), pp. 118-125, May 2001
17 S. Okada, N. Torii, K. Itoh, and M. Takenaka, 'Implementation of Elliptic Curve Cryptographic Coprocessor over $GF(2^m)$ on an FPGA,' Proc. Cryptographic Hardware and Embedded Systems(CHES 2000), pp. 25-40, Aug. 2000
18 J. Goodman and A. Chandrakasan, 'An Energy Efficient Reconfigurable Public-Key Cryptography Processor Architecture,' Proc. Cryptographic Hardware and Embedded Systems (CHES 2000), pp. 175-190, Aug. 2000
19 A. Satoh and K. Takano, 'A Scalable Dual-Field Elliptic Curve Cryptographic Processor,' IEEE Trans. on Computers, Vol. 52, No. 4, pp. 449-460, Apr. 2003   DOI   ScienceOn
20 S. Sutikno, A. Surya, and R. Effendi, 'An Implementation of ElGamal Elliptic Curves Cryptosystems,' Proc. 1998 IEEE Asia-Pacific Conf. Circuits and Systems (APCCAS '98), pp. 483-486, Nov. 1998   DOI
21 S. Sutikno, R. Effendi, and A. Surya, 'Design and Implementation of Arithmetic Processor $F_2^{155}$ for Elliptic Curve Cryptosystems,' Proc. 1998 IEEE Asia-Pacific Conf. Circuits and Systems (APCCAS '98), pp. 647-650, Nov. 1998   DOI
22 K.H. Leung, K.W. Ma, W.K. Wong, and P.H.W. Leong, 'FPGA Implementation of a Microcoded Elliptic Curve Cryptographic Processor,' Proc. 2000 IEEE Symp. Field Programmable Custom Computing Machines (FCCM '99), pp. 68-76, Apr. 2000   DOI
23 M. Ernst, S. Klupsch, O. Hauck, and S.A. Huss, 'Rapid Prototyping for Hardware Accelerated Elliptic Curve Public-Key Cryptosystems,' Proc. 12th Int''l Workshop Rapid System Prototyping (RSP 2001), pp. 24-29, Jun. 2001   DOI
24 J. Lopez and R. Dahab, 'Improved Algorithms for Elliptic Curve Arithmetic in GF(2m),' SAC '98, LNCS Springer Verlag, 1998
25 N. Gura, S.C. Shantz, H.E. Sumit Gupta, V. Gupta, D. Finchelstein, E. Goupy, and D. Stebila, 'An End-toEnd Systems Approach to Elliptic Curve Cryptography,' CHES '02, LNCS 2523, pp.349-365, 2002
26 S. Kwon, K. Gaj, C.H. Kim, and C.P. Hong, 'Efficient Linear Array for Multiplication in GF(2m) Using a Normal Basis for Elliptic Curve Cryptography,' CHES 2004, LNCS 3156, pp. 76-91, 2004
27 J. L. Massey and J.K. Omura, 'Computational method and apparatus for finite field arithmetic,' US Patent No. 4587627, 1986