• Title/Summary/Keyword: Field-programmable gate array (FPGA)

Search Result 349, Processing Time 0.026 seconds

FPGA-based Centralized Controller for Multiple PV Generators Tied to the DC Bus

  • Ahmed, Ashraf;Ganeshkumar, Pradeep;Park, Joung-Hu;Lee, Hojin
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.733-741
    • /
    • 2014
  • The integration of photovoltaic (PV) energy sources into DC grid has gained considerable attention because of its enhanced conversion efficiency with reduced number of power conversion stages. During the integration process, a local control unit is normally included with every power conversion stage of the PV source to accomplish the process of maximum power point tracking. A centralized monitoring and supervisory control unit is required for monitoring, power management, and protection of the entire system. Therefore, we propose a field-programmable gate array (FPGA) based centralized control unit that integrates all local controllers with the centralized monitoring unit. The main focus of this study is on the process of integrating many local control units into a single central unit. In this paper, we present design and optimization procedures for the hardware implementation of FPGA architecture. Furthermore, we propose a transient analysis and control design methodology with consideration of the nonlinear characteristics of the PV source. Hardware experiment results verify the efficiency of the central control unit and controller design.

Phase Locked Loop based Time Synchronization Algorithm for Telemetry System (텔레메트리 시스템을 위한 PLL 기반의 시각동기 알고리즘)

  • Kim, Geon-Hee;Jin, Mi-Hyun;Kim, Bok-Ki
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.4
    • /
    • pp.285-290
    • /
    • 2020
  • This paper presents a time synchronization algorithm based on PLL for application to telemetry systems and implement FPGA logic. The large aircraft of the telemetry system acquires status information through each distributed acquisition devices and analyzes the flight status in real time. For this reason, time synchronization between systems is important to improve precision. This paper presents a PLL based time synchronization algorithm that is less complex than other time synchronization methods and takes less time to process data because there is minimized message transmission for synchronization. The validity of proposed algorithm is proved by simulation of Python. And the VHDL logic was implemented in FPGA to check the time synchronization performance.

Design of Inter-Regional Instrument Group-B Decoder Based on FPGA for Time Synchronous (시각동기를 위한 FPGA 기반의 Inter-Regional Instrument Group-B 디코더 설계)

  • Kim, Hoon Yong;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.59-64
    • /
    • 2019
  • Recently, time synchronous has become important for satellite launch control facilities, multiple thermal power plants, and power system facilities. Information from time synchronous at each of these industrial sites requires time synchronization to control or monitor the system with correlation. In this paper, IRIG-B codes, which can be used for time synchronous, are used as specifications in IRIG standard 200-16. Signals from IRIG-B120 (Analog), IRIG-B000 (Digital), and one PPS are output from GPS receiver. Using the signal from IRIG-B120 (Analog), it passes through the signal from the analog amplifier and generates one PPS signal using the field-programmable gate array. The FPGA is used cyclone EPM570T100I5N. According to IEEE regulations, the error of one PPS is specified within 1us, but in this paper, the error is within 100ns. The output of the one PPS signal was then compared and tested against the one PPS signal on the GPS receiver to verify accuracy and reliability. In addition, the proposed time synchronous is simple to construct and structure, easy to implement, and provides high time precision compared to typical time synchronous. The output of the one PPS signals and IRIG-B000 signal will be used in many industry sectors.

Linearity improvement of UltraScale+ FPGA-based time-to-digital converter

  • Jaewon Kim;Jin Ho Jung;Yong Choi;Jiwoong Jung;Sangwon Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.484-492
    • /
    • 2023
  • Time-to-digital converters (TDCs) based on the tapped delay line (TDL) architecture have been widely used in various applications requiring a precise time measurement. However, the poor uniformity of the propagation delays in the TDL implemented on FPGA leads to bubble error and large nonlinearity of the TDC. The purpose of this study was to develop an advanced TDC architecture capable of minimizing the bubble errors and improving the linearity. To remove the bubble errors, the decimated delay line (DDL) architecture was implemented on the UltraScale + FPGA; meanwhile, to improve the linearity of the TDC, a histogram uniformization (HU) and multi-chain TDL (MCT) methods were developed and implemented on the FPGA. The integral nonlinearities (INLs) and differential nonlinearities (DNLs) of the plain TDCs with the 'HU method' (HU TDC) and with 'both HU and MCT methods' (HU-MCT TDC) were measured and compared to those of the TDC with 'DDL alone' (plain TDC). The linearity of HU-MCT TDC were superior to those of the plain TDC and HU TDC. The experiment results indicated that HU-MCT TDC developed in this study was useful for improving the linearity of the TDC, which allowed for high timing resolution to be achieved.

Design and Implementation of Multi-mode Sensor Signal Processor on FPGA Device (다중모드 센서 신호 처리 프로세서의 FPGA 기반 설계 및 구현)

  • Soongyu Kang;Yunho Jung
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.246-251
    • /
    • 2023
  • Internet of Things (IoT) systems process signals from various sensors using signal processing algorithms suitable for the signal characteristics. To analyze complex signals, these systems usually use signal processing algorithms in the frequency domain, such as fast Fourier transform (FFT), filtering, and short-time Fourier transform (STFT). In this study, we propose a multi-mode sensor signal processor (SSP) accelerator with an FFT-based hardware design. The FFT processor in the proposed SSP is designed with a radix-2 single-path delay feedback (R2SDF) pipeline architecture for high-speed operation. Moreover, based on this FFT processor, the proposed SSP can perform filtering and STFT operation. The proposed SSP is implemented on a field-programmable gate array (FPGA). By sharing the FFT processor for each algorithm, the required hardware resources are significantly reduced. The proposed SSP is implemented and verified on Xilinxh's Zynq Ultrascale+ MPSoC ZCU104 with 53,591 look-up tables (LUTs), 71,451 flip-flops (FFs), and 44 digital signal processors (DSPs). The FFT, filtering, and STFT algorithm implementations on the proposed SSP achieve 185x average acceleration.

Design on Neural Operation Unit with Modular Structure (모듈형 구조를 갖는 범용 뉴럴 연산회로 설계)

  • Kim Jong-Won;Cho Hyun-Chan;Seo Jae-Yong;Cho Tae-Hoon;Lee Sung-Jun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.125-129
    • /
    • 2006
  • By advent of NNC(Neural Network Chip), it is possible that process in parallel and discern the importance of signal with learning oneself by experience in external signal. So, the design of general purpose operation unit using VHDL(VHSIC Hardware Description Language) on the existing FPGA(Field Programmable Gate Array) can replaced EN(Expert Network) and learning algorithm. Also, neural network operation unit is possible various operation using learning of NN(Neural Network). This paper present general purpose operation unit using hierarchical structure of EN. EN of presented structure learn from logical gate which constitute a operation unit, it relocated several layer. The overall structure is hierarchical using a module, it has generality more than FPGA operation unit.

  • PDF

Prediction of Iron Loss Resistance by Using HILS System (HILS 시스템을 통한 IPMSM의 철손저항 추정)

  • Jeong, Kiyun;Kang, Raecheong;Lee, Hyeongcheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.25-33
    • /
    • 2015
  • This paper presents the d-q axis equivalent circuit model of an interior permanent magnet (IPM) which includes the iron loss resistance. The model is implemented to be able to run in real-time on the FPGA-based HIL simulator. Power electronic devices are removed from the motor control unit (MCU) and a separated controller is interfaced with the real-time simulated motor drive through a set of proper inputs and outputs. The inputs signals of the HIL simulation are the gate driver signals generated from the controller, and the outputs are the winding currents and resolver signals. This paper especially presents iron loss prediction which is introduced by means of comparing the torque calculated from d-q axis currents and the desired torque; and minimizing the torque difference. This prediction method has stable prediction algorithm to reduce torque difference at specific speed and load. Simulation results demonstrate the feasibility and effectiveness of the proposed methods.

FPGA Implementation of a Burst Cell Synchroniser for the ATM-PON Upstream (ATM-PON의 상향에서 버스트 셀 동기장치의 FPGA 구현)

  • Kim, Tae-Min;Chung, Hae;Shin, Gun-Soon;Kim, Jin-Hee;Sohn, Soo-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.12
    • /
    • pp.1-9
    • /
    • 2001
  • In the APON(ATM Passive Optical Network), the transmission of the upstream traffic is based on a TDMA(Time Division Multiple Access) method that an OLT(Optical Line Termination) permits ONUs(Optical Network Units) sending cells by allocating time slots. Because the upstream is not a streaming mode, the cell synchronizer has to be operated in the burst mode. Also, the cell phase monitor is required to prevent collisions between cells which are transmitted by multiple ONUs through a single optical fiber. In this paper, a TDMA burst cell synchroniser is implemented with the FPGA(Field Programmable Gate Array) being used in the APON based on G.983.1 for transmitting upstream cells. It has two main functions which are the upstream data recovery and the phase monitoring. The former is to recover the upstream data and clock in the OLT by seeking the preamble which is the overhead of the upstream time slot and by aligning the phase of the bit and cell with the system clock. The latter is to provide the information to the ONU to compensate for the equalization delay by monitoring continuously the phase difference between adjacent cells to avoid the cell collision on the upstream.

  • PDF

Experimental Verification of Heat Sink for FPGA Thermal Control (FPGA 열제어용 히트싱크 효과의 실험적 검증)

  • Park, Jin-Han;Kim, Hyeon-Soo;Ko, Hyun-Suk;Jin, Bong-Cheol;Seo, Hak-Keum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.9
    • /
    • pp.789-794
    • /
    • 2014
  • The FPGA is used to the high speed digital satellite communication on the Digital Signal Process Unit of the next generation GEO communication satellite. The high capacity FPGA has the high power dissipation and it is difficult to satisfy the derating requirement of temperature. This matter is the major factor to degrade the equipment life and reliability. The thermal control at the equipment level has been worked through thermal conduction in the space environment. The FPGA of CCGA or BGA package type was mounted on printed circuit board, but the PCB has low efficient to the thermal control. For the FPGA heat dissipation, the heat sink was applied between part lid and housing of equipment and the performance of heat sink was confirmed via thermal vacuum test under the condition of space qualification level. The FPGA of high power dissipation has been difficult to apply for space application, but FPGA with heat sink could be used to space application with the derating temperature margin.

Implementation of the Digital Current Control System for an Induction Motor Using FPGA (FPGA를 이용한 유도 전동기의 디지털 전류 제어 시스템 구현)

  • Yang, Oh
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.11
    • /
    • pp.21-30
    • /
    • 1998
  • In this paper, a digital current control system using a FPGA(Field Programmable Gate Array) was implemented, and the system was applied to an induction motor widely used as an industrial driving machine. The FPGA designed by VHDL(VHSIC Hardware Description Language) consists of a PWM(Pulse Width Modulation) generation block, a PWM protection block, a speed measuring block, a watch dog timer block, an interrupt control block, a decoder logic block, a wait control block and digital input and output blocks respectively. Dedicated clock inputs on the FPGA were used for high-speed execution, and an up-down counter and a latch block were designed in parallel, in order that the triangle wave could be operated at 40 MHz clock. When triangle wave is compared with many registers respectively, gate delay occurs from excessive fan-outs. To reduce the delay, two triangle wave registers were implemented in parallel. Amplitude and frequency of the triangle wave, and dead time of PWM could be changed by software. This FPGA was synthesized by pASIC 2SpDE and Synplify-Lite synthesis tool of Quick Logic company. The final simulation for worst cases was successfully performed under a Verilog HDL simulation environment. And the FPGA programmed for an 84 pin PLCC package was applied to digital current control system for 3-phase induction motor. The digital current control system of the 3 phase induction motor was configured using the DSP(TMS320C31-40 MHz), FPGA, A/D converter and Hall CT etc., and experimental results showed the effectiveness of the digital current control system.

  • PDF