• Title/Summary/Keyword: Feynman

Search Result 150, Processing Time 0.023 seconds

A FUBINI THEOREM FOR ANALYTIC FEYNMAN INTEGRALS WITH APPLICATIONS

  • Huffman, Timothy;Skoug, David;Storvick, David
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.409-420
    • /
    • 2001
  • In this paper we establish a Fubini theorem for various analytic Wiener and Feynman integrals. We then proceed to obtain several integration formulas as corollaries.

  • PDF

GENERALIZED ANALYTIC FOURIER-FEYNMAN TRANSFORMS AND CONVOLUTIONS ON A FRESNEL TYPE CLASS

  • Chang, Seung-Jun;Lee, Il-Yong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.223-245
    • /
    • 2011
  • In this paper, we de ne an $L_p$ analytic generalized Fourier Feynman transform and a convolution product of functionals in a Ba-nach algebra $\cal{F}$($C_{a,b}$[0, T]) which is called the Fresnel type class, and in more general class $\cal{F}_{A_1;A_2}$ of functionals de ned on general functio space $C_{a,b}$[0, T] rather than on classical Wiener space. Also we obtain some relationships between the $L_p$ analytic generalized Fourier-Feynman transform and convolution product for functionals in $\cal{F}$($C_{a,b}$[0, T]) and in $\cal{F}_{A_1,A_2}$.

EXTRACTING LINEAR FACTORS IN FEYNMAN'S OPERATIONAL CALCULI : THE CASE OF TIME DEPENDENT NONCOMMUTING OPERATORS

  • Ahn, Byung-Moo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.3
    • /
    • pp.573-587
    • /
    • 2004
  • Disentangling is the essential operation of Feynman's operational calculus for noncommuting operators. Thus formulas which simplify this operation are central to the subject. In a recent paper the procedure for 'extracting a linear factor' has been established in the setting of Feynman's operational calculus for time independent operators $A_1, ... , A_n$ and associated probability measures ${\mu}_1,..., {\mu}_n$. While the setting just described is natural in many circumstances, it is not natural for evolution problems. There the measures should not be restricted to probability measures and it is worthwhile to allow the operators to depend on time. The main purpose for this paper is to extend the procedure for extracting a linear factor to this latter setting. We should mention that Feynman's primary motivation for developing an operational calculus for noncommuting operators came from a desire to describe the evolution of certain quantum systems.m systems.

GENERALIZED FOURIER-FEYNMAN TRANSFORM AND SEQUENTIAL TRANSFORMS ON FUNCTION SPACE

  • Choi, Jae-Gil;Chang, Seung-Jun
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.5
    • /
    • pp.1065-1082
    • /
    • 2012
  • In this paper we first investigate the existence of the generalized Fourier-Feynman transform of the functional F given by $$F(x)={\hat{\nu}}((e_1,x)^{\sim},{\ldots},(e_n,x)^{\sim})$$, where $(e,x)^{\sim}$ denotes the Paley-Wiener-Zygmund stochastic integral with $x$ in a very general function space $C_{a,b}[0,T]$ and $\hat{\nu}$ is the Fourier transform of complex measure ${\nu}$ on $B({\mathbb{R}}^n)$ with finite total variation. We then define two sequential transforms. Finally, we establish that the one is to identify the generalized Fourier-Feynman transform and the another transform acts like an inverse generalized Fourier-Feynman transform.

CHANGE OF SCALE FORMULAS FOR FUNCTION SPACE INTEGRALS RELATED WITH FOURIER-FEYNMAN TRANSFORM AND CONVOLUTION ON Ca,b[0, T]

  • Kim, Bong Jin;Kim, Byoung Soo;Yoo, Il
    • Korean Journal of Mathematics
    • /
    • v.23 no.1
    • /
    • pp.47-64
    • /
    • 2015
  • We express generalized Fourier-Feynman transform and convolution product of functionals in a Banach algebra $\mathcal{S}(L^2_{a,b}[0,T])$ as limits of function space integrals on $C_{a,b}[0,T]$. Moreover we obtain change of scale formulas for function space integrals related with generalized Fourier-Feynman transform and convolution product of these functionals.

A TRANSLATION THEOREM FOR THE GENERALIZED FOURIER-FEYNMAN TRANSFORM ASSOCIATED WITH GAUSSIAN PROCESS ON FUNCTION SPACE

  • Chang, Seung Jun;Choi, Jae Gil;Ko, Ae Young
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.991-1017
    • /
    • 2016
  • In this paper we define a generalized analytic Fourier-Feynman transform associated with Gaussian process on the function space $C_{a,b}[0,T]$. We establish the existence of the generalized analytic Fourier-Feynman transform for certain bounded functionals on $C_{a,b}[0,T]$. We then proceed to establish a translation theorem for the generalized transform associated with Gaussian process.

Lp FOURIER-FEYNMAN TRANSFORMS AND CONVOLUTION

  • Ahn, Jae Moon
    • Korean Journal of Mathematics
    • /
    • v.7 no.2
    • /
    • pp.183-198
    • /
    • 1999
  • Let $\mathcal{F}(B)$ be the Fresnel class on an abstract Wiener space (B, H, ${\omega}$) which consists of functionals F of the form : $$F(x)={\int}_H\;{\exp}\{i(h,x)^{\sim}\}df(h),\;x{\in}B$$ where $({\cdot}{\cdot})^{\sim}$ is a stochastic inner product between H and B, and $f$ is in $\mathcal{M}(H)$, the space of all complex-valued countably additive Borel measures on H. We introduce the concepts of an $L_p$ analytic Fourier-Feynman transform ($1{\leq}p{\leq}2$) and a convolution product on $\mathcal{F}(B)$ and verify the existence of the $L_p$ analytic Fourier-Feynman transforms for functionls in $\mathcal{F}(B)$. Moreover, we verify that the Fresnel class $\mathcal{F}(B)$ is closed under the $L_p$ analytic Fourier-Feynman transform and the convolution product, respectively. And we investigate some interesting properties for the $n$-repeated $L_p$ analytic Fourier-Feynman transform on $\mathcal{F}(B)$. Finally, we show that several results in [9] come from our results in Section 3.

  • PDF

CONDITIONAL FORUIER-FEYNMAN TRANSFORM AND CONVOLUTION PRODUCT FOR A VECTOR VALUED CONDITIONING FUNCTION

  • Kim, Bong Jin
    • Korean Journal of Mathematics
    • /
    • v.30 no.2
    • /
    • pp.239-247
    • /
    • 2022
  • Let C0[0, T] denote the Wiener space, the space of continuous functions x(t) on [0, T] such that x(0) = 0. Define a random vector $Z_{\vec{e},k}:C_0[0,\;T] {\rightarrow}{\mathbb{R}}^k$ by $$Z_{\vec{e},k}(x)=({\normalsize\displaystyle\smashmargin{2}{\int\nolimits_0}^T}\;e_1(t)dx(t),\;{\ldots},\;{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_0}^T}\;ek(t)dx(t))$$ where ej ∈ L2[0, T] with ej ≠ 0 a.e., j = 1, …, k. In this paper we study the conditional Fourier-Feynman transform and a conditional convolution product for a cylinder type functionals defined on C0[0, T] with a general vector valued conditioning functions $Z_{\vec{e},k}$ above which need not depend upon the values of x at only finitely many points in (0, T] rather than a conditioning function X(x) = (x(t1), …, x(tn)) where 0 < t1 < … < tn = T. In particular we show that the conditional Fourier-Feynman transform of the conditional convolution product is the product of conditional Fourier-Feynman transforms.

CONDITIONAL FOURIER-FEYNMAN TRANSFORMS AND CONVOLUTIONS OF UNBOUNDED FUNCTIONS ON A GENERALIZED WIENER SPACE

  • Cho, Dong Hyun
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1105-1127
    • /
    • 2013
  • Let C[0, $t$] denote the function space of real-valued continuous paths on [0, $t$]. Define $X_n\;:\;C[0,t]{\rightarrow}\mathbb{R}^{n+1}$ and $X_{n+1}\;:\;C[0,t]{\rightarrow}\mathbb{R}^{n+2}$ by $X_n(x)=(x(t_0),x(t_1),{\ldots},x(t_n))$ and $X_{n+1}(x)=(x(t_0),x(t_1),{\ldots},x(t_n),x(t_{n+1}))$, respectively, where $0=t_0 <; t_1 <{\ldots} < t_n < t_{n+1}=t$. In the present paper, using simple formulas for the conditional expectations with the conditioning functions $X_n$ and $X_{n+1}$, we evaluate the $L_p(1{\leq}p{\leq}{\infty})$-analytic conditional Fourier-Feynman transforms and the conditional convolution products of the functions, which have the form $fr((v_1,x),{\ldots},(v_r,x)){\int}_{L_2}_{[0,t]}\exp\{i(v,x)\}d{\sigma}(v)$ for $x{\in}C[0,t]$, where $\{v_1,{\ldots},v_r\}$ is an orthonormal subset of $L_2[0,t]$, $f_r{\in}L_p(\mathbb{R}^r)$, and ${\sigma}$ is the complex Borel measure of bounded variation on $L_2[0,t]$. We then investigate the inverse conditional Fourier-Feynman transforms of the function and prove that the analytic conditional Fourier-Feynman transforms of the conditional convolution products for the functions can be expressed by the products of the analytic conditional Fourier-Feynman transform of each function.

A TIME-INDEPENDENT CONDITIONAL FOURIER-FEYNMAN TRANSFORM AND CONVOLUTION PRODUCT ON AN ANALOGUE OF WIENER SPACE

  • Cho, Dong Hyun
    • Honam Mathematical Journal
    • /
    • v.35 no.2
    • /
    • pp.179-200
    • /
    • 2013
  • Let $C[0,t]$ denote the function space of all real-valued continuous paths on $[0,t]$. Define $X_n:C[0,t]{\rightarrow}\mathbb{R}^{n+1}$ by $Xn(x)=(x(t_0),x(t_1),{\cdots},x(t_n))$, where $0=t_0$ < $t_1$ < ${\cdots}$ < $t_n$ < $t$ is a partition of $[0,t]$. In the present paper, using a simple formula for the conditional expectation given the conditioning function $X_n$, we evaluate the $L_p(1{\leq}p{\leq}{\infty})$-analytic conditional Fourier-Feynman transform and the conditional convolution product of the cylinder functions which have the form $$f((v_1,x),{\cdots},(v_r,x))\;for\;x{\in}C[0,t]$$, where {$v_1,{\cdots},v_r$} is an orthonormal subset of $L_2[0,t]$ and $f{\in}L_p(\mathbb{R}^r)$. We then investigate several relationships between the conditional Fourier-Feynman transform and the conditional convolution product of the cylinder functions.